scispace - formally typeset
Search or ask a question
Author

Charles A. Dinarello

Bio: Charles A. Dinarello is an academic researcher from University of Colorado Denver. The author has contributed to research in topics: Interleukin & Cytokine. The author has an hindex of 190, co-authored 1058 publications receiving 139668 citations. Previous affiliations of Charles A. Dinarello include University of Guadalajara & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Anakinra has the potential to be an effective and well-tolerated treatment for HS and inhibition of interleukin 1 is a promising treatment strategy.
Abstract: Importance Hidradenitis suppurativa (HS) is a common skin disorder in which excessive inflammation is believed to have an important role. There is no specific therapy for HS. Objective To investigate the safety and efficacy of the anti-inflammatory biological therapy anakinra in HS. Design, Setting, and Participants Double-blind, randomized, placebo-controlled clinical trial with a 12-week treatment phase and a 12-week follow-up phase. The setting was Attikon University General Hospital, a tertiary care institution in Athens, Greece. Participants were 20 patients with Hurley stage II or III HS. The study and the analysis were conducted between March 1, 2012, and February 28, 2014. Interventions Patients were randomized to receive injections from identical syringes containing placebo or anakinra subcutaneously once daily for 12 weeks. Peripheral blood mononuclear cells were isolated and stimulated for cytokine production before the beginning of treatment and at week 12 (the end of treatment) and week 24. Main Outcomes and Measures The primary end point was the effect of anakinra on HS disease severity. Secondary end points were the time to a new exacerbation and the production of cytokines. Results Among the 20 trial participants, 10 each were randomized to the group to receive anakinra or the placebo group. The mean (SD) ages were 42.8 (13.8) and 36 (11.3) years in the anakinra and placebo groups, respectively. The disease activity score was decreased at the end of treatment in 20% (2 of 10) of the placebo arm compared with 78% (7 of 9) of the anakinra arm ( P = .02). Hidradenitis suppurativa clinical response at 12 weeks was achieved in 30% (3 of 10) of the placebo arm and in 78% (7 of 9) of the anakinra arm ( P = .04). The production of interferon-γ by peripheral blood mononuclear cells in the anakinra arm was decreased, and the production of interleukin 22 was increased. The time to a new HS exacerbation was prolonged in the anakinra arm by log-rank test (log rank, 6.137; P = .01). No serious adverse events were reported. Conclusions and Relevance Anakinra has the potential to be an effective and well-tolerated treatment for HS. Inhibition of interleukin 1 is a promising treatment strategy. Trial Registration clinicaltrials.gov Identifier:NCT01558375

186 citations

Journal ArticleDOI
TL;DR: The data reviewed here suggest a therapeutic potential for IL‐37, which binds to the IL‐18 receptor but then recruits the orphan IL‐1R8 (formerly TIR8 or SIGIRR) in order to function as an inhibitor.
Abstract: IL-37 is unique in the IL-1 family in that unlike other members of the family, IL-37 broadly suppresses innate immunity. IL-37 can be elevated in humans with inflammatory and autoimmune diseases where it likely functions to limit inflammation. Transgenic mice expressing human IL-37 (IL37-tg) exhibit less severe inflammation in models of endotoxin shock, colitis, myocardial infarction, lung, and spinal cord injury. IL37-tg mice have reduced antigen-specific responses and dendritic cells (DCs) from these mice exhibit characteristics of tolerogenic DCs. Compared to aging wild-type (WT) mice, aging IL37-tg mice are protected against B-cell leukemogenesis and heart failure. Treatment of WT mice with recombinant human IL-37 has been shown to be protective in several models of inflammation and injury. IL-37 binds to the IL-18 receptor but then recruits the orphan IL-1R8 (formerly TIR8 or SIGIRR) in order to function as an inhibitor. Here, we review the discovery of IL-37, its production, release, and mechanisms by which IL-37 reduces inflammation and suppresses immune responses. The data reviewed here suggest a therapeutic potential for IL-37.

182 citations

Journal ArticleDOI
TL;DR: It is demonstrated that nonphagocytosed endothelial apoptotic bodies are inflammatory, providing a vehicle for IL-1α and, therefore, constitute a unique mechanism for sterile inflammation.
Abstract: Sterile inflammation resulting from cell death is due to the release of cell contents normally inactive and sequestered within the cell; fragments of cell membranes from dying cells also contribute to sterile inflammation. Endothelial cells undergoing stress-induced apoptosis release membrane microparticles, which become vehicles for proinflammatory signals. Here, we show that stress-activated endothelial cells release two distinct populations of particles: One population consists of membrane microparticles (<1 μm, annexin V positive without DNA and no histones) and another larger (1–3 μm) apoptotic body-like particles containing nuclear fragments and histones, representing apoptotic bodies. Contrary to present concepts, endothelial microparticles do not contain IL-1α and do not induce neutrophilic chemokines in vitro. In contrast, the large apoptotic bodies contain the full-length IL-1α precursor and the processed mature form. In vitro, these apoptotic bodies induce monocyte chemotactic protein-1 and IL-8 chemokine secretion in an IL-1α–dependent but IL-1β–independent fashion. Injection of these apoptotic bodies into the peritoneal cavity of mice induces elevated serum neutrophil-inducing chemokines, which was prevented by cotreatment with the IL-1 receptor antagonist. Consistently, injection of these large apoptotic bodies into the peritoneal cavity induced a neutrophilic infiltration that was prevented by IL-1 blockade. Although apoptosis is ordinarily considered noninflammatory, these data demonstrate that nonphagocytosed endothelial apoptotic bodies are inflammatory, providing a vehicle for IL-1α and, therefore, constitute a unique mechanism for sterile inflammation.

182 citations

Journal ArticleDOI
TL;DR: Nuclear localization leucine-rich-repeat protein 1 (NLRP1) RNA and protein levels were not altered by the predominant high-risk haplotype, indicating that altered function of the corresponding multivariant NLRP1 polypeptide predisposes to autoimmune diseases by activation of the NL RP1 inflammasome.
Abstract: Nuclear localization leucine-rich-repeat protein 1 (NLRP1) is a key regulator of the innate immune system, particularly in the skin where, in response to molecular triggers such as pathogen-associated or damage-associated molecular patterns, the NLRP1 inflammasome promotes caspase-1-dependent processing of bioactive interleukin-1β (IL-1β), resulting in IL-1β secretion and downstream inflammatory responses. NLRP1 is genetically associated with risk of several autoimmune diseases including generalized vitiligo, Addison disease, type 1 diabetes, rheumatoid arthritis, and others. Here we identify a repertoire of variation in NLRP1 by deep DNA resequencing. Predicted functional variations in NLRP1 reside in several common high-risk haplotypes that differ from the reference by multiple nonsynonymous substitutions. The haplotypes that are high risk for disease share two substitutions, L155H and M1184V, and are inherited largely intact due to extensive linkage disequilibrium across the region. Functionally, we found that peripheral blood monocytes from healthy subjects homozygous for the predominant high-risk haplotype 2A processed significantly greater (P < 0.0001) amounts of the IL-1β precursor to mature bioactive IL-1β under basal (resting) conditions and in response to Toll-like receptor (TLR) agonists (TLR2 and TLR4) compared with monocytes from subjects homozygous for the reference haplotype 1. The increase in basal release was 1.8-fold greater in haplotype 2A monocytes, and these differences between the two haplotypes were consistently observed three times over a 3-mo period; no differences were observed for IL-1α or TNFα. NLRP1 RNA and protein levels were not altered by the predominant high-risk haplotype, indicating that altered function of the corresponding multivariant NLRP1 polypeptide predisposes to autoimmune diseases by activation of the NLRP1 inflammasome.

181 citations

Journal ArticleDOI
TL;DR: It is shown that caspase-1 processing is required for maturation of the intracellular IL-37 precursor for its translocation to the nucleus, and that neutralizing antibodies reverse the suppression of LPS-induced IL-6 inIL-37 transgenic mice, supporting a role for extracellular signaling by IL- 37.
Abstract: IL-37 is a fundamental inhibitor of innate immunity. Human IL-37 has a caspase-1 cleavage site and translocates to the nucleus upon LPS stimulation. Here, we investigated whether caspase-1 processing affects IL-37–mediated suppression of LPS-induced cytokines and the release from cells by analyzing a caspase-1 cleavage site mutant IL-37 (IL-37D20A). Nuclear translocation of IL-37D20A is significantly impaired compared with WT IL-37 in transfected cells. LPS-induced IL-6 was decreased in cells expressing WT IL-37 but not IL-37D20A. The function of IL-37 in transfected bone marrow-derived macrophages is nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-dependent, because IL-37 transfection in apoptosis-associated speck-like protein containing a carboxyl-terminal caspase recruitment domain- and NLRP3-deficient cells does not reduce levels of IL-6 and IL-1β upon LPS stimulation. IL-37–expressing macrophages release both precursor and mature IL-37, but only the externalization of mature IL-37 was dependent on ATP. Precursor and mature IL-37 was also secreted from human dendritic cells and peripheral blood mononuclear cells. To determine whether IL-37 is active in the extracellular compartment, we pretreated IL-37 transgenic mice with IL-37–neutralizing antibodies before LPS challenge. In IL-37–expressing mice, neutralizing IL-37 antibodies reversed the suppression of LPS-induced serum IL-6. In contrast, the addition of neutralizing antibody did not reverse suppression of LPS-induced IL-6 in mouse macrophages transfected with IL-37. Although caspase-1 is required for nuclear translocation of intracellular IL-37 and for secretion of mature IL-37, the release of the IL-37 precursor is independent of caspase-1 activation. IL-37 now emerges as a dual-function cytokine with intra- and extracellular properties for suppressing innate inflammation.

180 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 1992-Chest
TL;DR: An American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference was held in Northbrook in August 1991 with the goal of agreeing on a set of definitions that could be applied to patients with sepsis and its sequelae as mentioned in this paper.

12,583 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations