scispace - formally typeset
Search or ask a question
Author

Charles A. Dinarello

Bio: Charles A. Dinarello is an academic researcher from University of Colorado Denver. The author has contributed to research in topics: Interleukin & Cytokine. The author has an hindex of 190, co-authored 1058 publications receiving 139668 citations. Previous affiliations of Charles A. Dinarello include University of Guadalajara & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Although IL‐1β‐deficient mice respond normally to the systemic administration of lipopolysaccharide (LPS), they do not develop an acute‐phase response in the localized tissue damage model of turpentine injection.
Abstract: Interleukin-1 (IL-1) plays a crucial role in the development of the pathophysiological responses to infection and inflammation. However, the relative contributions of IL-1 alpha and IL-1 beta remain to be clarified. IL-1 beta-deficient mice are a powerful tool to investigate the specific role of IL-1 beta in various experimental conditions. In this report, we summarize the response of IL-1 beta deficient mice to two different inflammatory stimuli, turpentine and endotoxin. Although IL-1 beta-deficient mice respond normally to the systemic administration of lipopolysaccharide (LPS), they do not develop an acute-phase response in the localized tissue damage model of turpentine injection. The results obtained using the IL-1 beta-deficient mice are compared here with those observed in the IL-1 beta-converting enzyme-deficient, IL-6-deficient, tumour necrosis factor-receptor p55-deficient, and interferon-gamma-receptor-deficient mice.

169 citations

Journal ArticleDOI
TL;DR: It is shown that IL-1β inhibition stably reduces tumor growth by limiting inflammation and inducing the maturation of immature myeloid cells into M1 macrophages, and is suggested as an effective antitumor therapy.
Abstract: In this study, we assessed the involvement of IL-1β in early angiogenic responses induced by malignant cells using Matrigel plugs supplemented with B16 melanoma cells. We found that during the angiogenic response, IL-1β and vascular endothelial growth factor (VEGF) interact in a newly described autoinduction circuit, in which each of these cytokines induces the other. The IL-1β and VEGF circuit acts through interactions between bone marrow-derived VEGF receptor 1(+)/IL-1R1(+) immature myeloid cells and tissue endothelial cells. Myeloid cells produce IL-1β and additional proinflammatory cytokines, which subsequently activate endothelial cells to produce VEGF and other proangiogenic factors and provide the inflammatory microenvironment for angiogenesis and tumor progression. These mechanisms were also observed in a nontumor early angiogenic response elicited in Matrigel plugs by either rIL-1β or recombinant VEGF. We have shown that IL-1β inhibition stably reduces tumor growth by limiting inflammation and inducing the maturation of immature myeloid cells into M1 macrophages. In sharp contrast, only transient inhibition of tumor growth was observed after VEGF neutralization, followed by tumor recurrence mediated by rebound angiogenesis. This occurs via the reprogramming of VEGF receptor 1(+)/IL-1R1(+) cells to express hypoxia inducible factor-1α, VEGF, and other angiogenic factors, thereby directly supporting proliferation of endothelial cells and blood vessel formation in a paracrine manner. We suggest using IL-1β inhibition as an effective antitumor therapy and are currently optimizing the conditions for its application in the clinic.

169 citations

Journal ArticleDOI
TL;DR: This issue of Seminars in Immunology on The Interleukin-1 (IL-1) Family of Ligands and Receptors updates the rapidly expanding importance of this family.

168 citations

Journal ArticleDOI
TL;DR: It is concluded that early blockade of the IL-1 receptor is therapeutic in acute hyperinflammatory respiratory failure in COVID-19 patients.
Abstract: Around the tenth day after diagnosis, ∼20% of patients with coronavirus disease 2019 (COVID-19)-associated pneumonia evolve toward severe oxygen dependence (stage 2b) and acute respiratory distress syndrome (stage 3) associated with systemic inflammation often termed a "cytokine storm." Because interleukin-1 (IL-1) blocks the production of IL-6 and other proinflammatory cytokines, we treated COVID-19 patients early in the disease with the IL-1 receptor antagonist, anakinra. We retrospectively compared 22 patients from three different centers in France with stages 2b and 3 COVID-19-associated pneumonia presenting with acute severe respiratory failure and systemic inflammation who received either standard-of-care treatment alone (10 patients) or combined with intravenous anakinra (12 patients). Treatment started at 300 mg⋅d-1 for 5 d, then tapered with lower dosing over 3 d. Both populations were comparable for age, comorbidities, clinical stage, and elevated biomarkers of systemic inflammation. All of the patients treated with anakinra improved clinically (P < 0.01), with no deaths, significant decreases in oxygen requirements (P < 0.05), and more days without invasive mechanical ventilation (P < 0.06), compared with the control group. The effect of anakinra was rapid, as judged by significant decrease of fever and C-reactive protein at day 3. A mean total dose of 1,950 mg was infused with no adverse side effects or bacterial infection. We conclude that early blockade of the IL-1 receptor is therapeutic in acute hyperinflammatory respiratory failure in COVID-19 patients.

168 citations

Journal ArticleDOI
TL;DR: Blocking cytokines will not kill tumor cells nor prevent carcinogenesis, but will reduce tumor growth and spread if administered at sufficient concentrations and will require parenteral therapy.
Abstract: Cytokines such as IL-1 and TNF are primarily pro-inflammatory. The inflammation induced by these cytokines is reflected in the type of genes they induce. In the pathogenesis of carcinogenesis as well as tumor growth and spread, cytokines such as IL-1 and TNF induce chemokines that attract neutrophils. Neutrophils are key players in the production of reactive oxygen species and carcinogenesis. Another aspect of pro-inflammatory cytokines is the induction of adhesion molecules and metalloproteinases, both of which provide mechanisms for tumor invasion. Blocking cytokines, however, will reduce tumor growth and spread if administered at sufficient concentrations and will require parenteral therapy. However, blocking cytokines will not kill tumor cells nor prevent carcinogenesis. Blocking cytokines is best as an adjunct therapy together with tumorocidal drugs.

165 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 1992-Chest
TL;DR: An American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference was held in Northbrook in August 1991 with the goal of agreeing on a set of definitions that could be applied to patients with sepsis and its sequelae as mentioned in this paper.

12,583 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations