scispace - formally typeset
Search or ask a question
Author

Charles A. Dinarello

Bio: Charles A. Dinarello is an academic researcher from University of Colorado Denver. The author has contributed to research in topics: Interleukin & Cytokine. The author has an hindex of 190, co-authored 1058 publications receiving 139668 citations. Previous affiliations of Charles A. Dinarello include University of Guadalajara & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Acellular components of C. pneumoniae are a potent stimulus for cytokine production, and this mechanism may have an important role in the inflammatory aspects of atherogenesis.
Abstract: Accumulating evidence suggest that infection with Chlamydia pneumoniae is associated with atherosclerosis, but the mechanisms involved remain unclear. Inflammation is important in the initial phase of atherogenesis, and cytokines are important in the initiation and progression of inflammation. The aim of this study was to assess the capacity of acellular components of C. pneumoniae to stimulate the production of pro-inflammatory cytokines and chemokines. Peripheral blood mononuclear cells were stimulated in vitro with sonicated C. pneumoniae. Significant amounts of TNF-alpha, IL-1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) were produced. Inhibition of endotoxin using polymyxin B revealed that chlamydial endotoxin plays a minor role in the cytokine induction. Neutralization of TNF by TNF-binding protein and blockade of IL-1 receptors by IL-1 receptor antagonist revealed that TNF, IL-1 and IL-6 production was independent from each other, whereas IL-8 synthesis was strongly dependent on endogenous TNF and IL-1. In contrast, synthesis of MCP-1 and MIP-1alpha was dependent on endogenous TNF, but not IL-1. In conclusion, acellular components of C. pneumoniae are a potent stimulus for cytokine production, and this mechanism may have an important role in the inflammatory aspects of atherogenesis.

101 citations

Journal ArticleDOI
TL;DR: In a simple 24-h human whole blood culture, IFN-gamma was produced by the combination of lipopolysaccharide (LPS) plus IL-18.
Abstract: Interleukin-18 (IL-18) is a newly described cytokine, formerly called interferon-gamma (IFN-gamma)-inducing factor. In a simple 24-h human whole blood culture, IFN-gamma was produced by the combination of lipopolysaccharide (LPS) plus IL-18. To liberate cytokines in the leukocyte and red cell compartments, the detergent Triton X-100 was added to the entire blood culture. The combination of low concentrations of LPS plus IL-18 induced a 3- to 5-fold greater production of IFN-gamma than did either stimulant alone. Tumor necrosis factor-alpha (TNF-alpha), IL-6, and IL-8 were also produced. The presence of IL-10 completely suppressed the production of IFN-gamma and reduced that of TNF-alpha, IL-6, and IL-8. Thus, IFN-gamma, TNF-alpha, IL-8, and IL-6 are produced in a single whole blood culture, making correlations in the synthesis of a T helper type 1 cytokine and proinflammatory cytokines with disease activity possible in a single culture.

100 citations

Journal ArticleDOI
TL;DR: Data support the concept that there are two classes of cytokines that stimulate hepatic fatty acid synthesis, those that can increase hepatic citrate levels and those that cannot.
Abstract: Tumor necrosis factor (TNF) increases serum triglycerides in rats by increasing de novo hepatic fatty acid synthesis and very low density lipoprotein production. We have recently shown that several other cytokines increase hepatic fatty acid synthesis in the mouse. We now explore the mechanism by which these cytokines increase de novo lipogenesis and the interactions between cytokines in fed mice. TNF administration results in increased hepatic levels of citrate, the primary allosteric activator of acetyl-CoA carboxylase, which is the major rate-limiting enzyme for fatty acid synthesis. The TNF-induced increase in citrate occurs within 15 min of administration, early enough to account for the acute rise in hepatic fatty acid synthesis seen by 30 min after TNF administration. IL-1, which also increases hepatic fatty acid synthesis, produces similar increases in hepatic citrate levels. In contrast, another potent stimulator of hepatic fatty acid-synthesis, interferon-a (IFNα), has no effect on hepatic citra...

99 citations

Journal ArticleDOI
TL;DR: IL-1β-deficient mice are protected against local and systemic inflammation due to live infections, autoimmune processes, tumor metastasis and even chemical carcinogenesis, and a role for autophagy in production of IL-1 β has emerged with deletion of the ATG16L1 gene.

99 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 1992-Chest
TL;DR: An American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference was held in Northbrook in August 1991 with the goal of agreeing on a set of definitions that could be applied to patients with sepsis and its sequelae as mentioned in this paper.

12,583 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations