scispace - formally typeset
Search or ask a question
Author

Charles A. Triplehorn

Other affiliations: University of Wisconsin-Madison
Bio: Charles A. Triplehorn is an academic researcher from Ohio State University. The author has contributed to research in topics: Genus & Subgenus. The author has an hindex of 10, co-authored 51 publications receiving 3216 citations. Previous affiliations of Charles A. Triplehorn include University of Wisconsin-Madison.


Papers
More filters
Book
01 Jan 1954
TL;DR: An introduction to the study of insects is presented, with some examples from the natural sciences, of birds, bees, and other insects that have been studied in detail.
Abstract: An introduction to the study of insects , An introduction to the study of insects , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

2,130 citations

Journal ArticleDOI
TL;DR: The taxonomic history of the genus Eleodes Eschscholtz is reviewed and the subgenus Melaneleodes Blaisdell redefined based on characters of the female terminalia with Blaps carbonaria Say herein designated as type-species.
Abstract: The taxonomic history of the genus Eleodes Eschscholtz is reviewed and the subgenus Melaneleodes Blaisdell redefined based on characters of the female terminalia with Blaps carbonaria Say herein designated as type-species. Eleodes debilis LeConte is removed from Melaneleodes to a new monotypic subgenus, Omegeleodes, based on the female characters. The subgenus Melaneleodes as redefined contains eleven species: anthracinus Blaisdell (new status), carbonarius (Say), halli Blaisdell (new status), humeralis LeConte, neomexicanus Blaisdell, parowanus Blaisdell, pedinoides LeConte, quadricollis Eschscholtz, rileyi Casey, tricostatus (Say) and wenzeli Blaisdell. Eleodes halli Blaisdell is resurrected from synonymy as the oldest available name to replace the homonym Eleodes fuscipilosus Blaisdell 1925 (nec Casey 1890). Eleodes anthracinus Blaisdell, a subspecies of E. quadricollis Eschscholtz is elevated to full species. The subspecies E. quadricollis lustrans Blaisdell is placed in a new combination as ...

21 citations

Book ChapterDOI
19 Jun 2002

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An updated, comprehensive list of mycoinsecticides and mycoacaricides developed worldwide since the 1960s, with a total of 171 products claimed to control acarines (mites and ticks) in at least 4 families.

1,163 citations

Journal ArticleDOI
04 Apr 2011-ZooKeys
TL;DR: A catalogue of 4887 family-group names based on 4707 distinct genera in Coleoptera is given, which recognizes as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes.
Abstract: We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification. New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Adam, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Adam, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Baguena Corella, 1948 (Aderidae). Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schonherr, 1823 nom. oblitum (Curculionidae), Cleonini Schonherr, 1826 nom. protectum over Geomorini Schonherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candeze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae).

935 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose that conservation biologists should take advantage of terrestrial arthropod diversity as a rich data source for conservation planning and management, and use the microgeography of selected arthropoid taxa to delineate distinct biogeographic zones, areas of endemism, community types, and centers of evolutionary radiation.
Abstract: Arthropods, the most diverse component of terrestrial ecosystems, occupy a tremendous variety of functional niches and microhabitats across a wide array of spatial and temporal scales. We propose that conservation biologists should take advantage of terrestrial arthropod diversity as a rich data source for conservation planning and management. For reserve selection and design, documentation of the microgeography of selected arthropod taxa can delineate distinct biogeographic zones, areas of endemism, community types, and centers of evolutionary radiation to improve the spatial resolution of conservation planning. For management of natural areas, monitoring of terrestrial arthropod indicators can provide early warnings of ecological changes, and can be used to assay the effects of further fragmentation on natural areas that no longer support vertebrate indicator species. Many arthropod indicators respond to environmental changes more rapidly than do vertebrate indicators, which may exhibit population responses that do not become evident until too late for proactive management. Not all arthropod taxa are equally effective as indicators for conservation planning, and the qualities of indicators can differ for purposes of inventory versus monitoring. Assemblages of arthropod taxa used as biogeographic probes in inventories should exhibit relatively high species diversity, high endemism, and encompass the geographic range of interest. For monitoring purposes, indicator assemblages should exhibit varying sensitivity to environmental perturbations and a diversity of life-history and ecological preferences. Resumen: Los artropodos, el componente mas diverso de los ecosistemas terrestres, ocupa una tremenda variedad de nichos funcionales y microhabitats a lo largo de una amplio espectro de escalas espaciales y temporales. Nosotros proponemos que los biologos de conservacion deberian aprovechar la diversidad de los atropodos terrestres como una rica fuente para el planeamiento y manejo conservacionista. La documentacion de la microgeografia de ciertos taxones de artropodos puede delinear zonas biogeograficas precisas, areas de endemismo, tipos de comunidades, y centros de radiacion evolutiva para mejorar la resolucion espacial en el planeamiento conservacionista destinado a la seleccion y diseno de reservas. En cuanto al manejo de areas naturales, el monitoreo de artropodos terrestres puede proveer de avisos tempranos sobre cambios ecologicos y puede ser usado para investigar los efectos de la fragmentacion subsecuente de areas naturales que ya no mantienen especies de vertebrados indicadoras. Muchos artropodos indicadores responden a los cambios hambientales mas rapidamente que vertebrados indicadores, los cuales pueden exhibir respuestas poblacionales que solo se hacen evidentes cuando ya es muy tarde para el manejo proteccionista. No todos los taxones de artropodos son igualmente efectivos como indicadores para el planeamiento conservacionista, y las calidades de los indicadores pueden variar dependiendo si su uso es con fines de inventario o de monitoreo. Las asociaciones de artropodos usados como sondas en inventarios deberian exhibir diversidades especificas relativamente altas, alto endemismo y deberian abarcar el rango geografico de interes. Si son usados con propositos de monitoreo, las asociaciones de indicadores deberian exhibir diferentes sensibilidades a las perturbaciones ambientales, y diversidad en cuanto a historias de vida y preferencias ecologicas.

797 citations

Journal ArticleDOI
TL;DR: It is concluded that sequence variation in the COI barcode region will be very effective for discriminating species of Crustacea.
Abstract: The ability of a 650 base pair section of the mitochondrial cytochrome c oxidase I (COI) gene to provide species-level identifications has been demonstrated for large taxonomic assemblages of animals such as insects, birds, and fishes, but not for the subphylum Crustacea, one of the most diverse groups of arthropods. In this study, we test the ability of COI to provide identifications in this group, examining two disparate levels in the taxonomic hierarchy — orders and species. The first phase of our study involved the development of a sequence profile for 23 dominant crustacean orders, based upon the analysis of 150 species, each belonging to a different family. The COI amino acid data placed these taxa into cohesive assemblages whose membership coincided with currently accepted boundaries at the order, superorder, and subclass levels. Species-level resolution was subsequently exam- ined in an assemblage of Decapoda and in representatives of the genera Daphnia (Cladocera) and Gammarus (Amphipoda). These studies revealed that levels of nucleotide sequence divergence were from 19 to 48 times greater between congeneric species than between individuals of a species. We conclude that sequence variation in the COI barcode region will be very effective for discriminating species of Crustacea. Resume : Il a ete demontre que l'utilisation d'une section de 650 paires de bases du gene mitochondrial de la cyto- chrome c oxydase I (COI) permet de faire des identifications au niveau specifique de grands ensembles taxonomiques d'animaux tels que les insectes, les oiseaux et les poissons, mais pas encore dans le sous-phylum des crustaces, l'un des groupes les plus diversifies d'arthropodes. Nous testons dans notre etude le potentiel de l'utilisation de COI pour faire des identifications dans ce groupe en examinant deux niveaux disparates de la hierarchie taxonomique — les ordres et les especes. La premiere phase de notre recherche consiste en l'etablissement de profils de sequences pour 23 des ordres principaux de crustaces, d'apres l'analyse de 150 especes, appartenant chacune a une famille differente. Les donnees sur les acides amines de COI permettent de placer ces taxons en ensembles cohesifs dont la composition coincide avec les frontieres couramment acceptees aux niveaux de l'ordre, du super-ordre et de la sous-classe. Nous avons ensuite etudie la determination au niveau specifique chez un ensemble de decapodes et chez des representants des genres Daphnia (Cladocera) et Gammarus (Amphipoda). Ces etudes revelent que les niveaux de divergence des sequences de nucleotides sont de 19 a 48 fois plus importants entre les especes d'un meme genre qu'entre les indivi- dus d'une meme espece. Nous concluons que la variation des sequences dans la region du code-barre de COI devrait permettre de separer de facon tres efficace les especes de crustaces.

582 citations