scispace - formally typeset
Search or ask a question
Author

Charles-André Fustin

Bio: Charles-André Fustin is an academic researcher from Université catholique de Louvain. The author has contributed to research in topics: Copolymer & Micelle. The author has an hindex of 39, co-authored 133 publications receiving 4956 citations. Previous affiliations of Charles-André Fustin include Eindhoven University of Technology & Chalmers University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review highlights the large number of methods to exploit colloidal assembly of comparably simple particles with nano- to micrometer dimensions in order to access complex structural hierarchies from nanoscopic over microscopic to macroscopic dimensions.
Abstract: This Review highlights the large number of methods to exploit colloidal assembly of comparably simple particles with nano- to micrometer dimensions in order to access complex structural hierarchies from nanoscopic over microscopic to macroscopic dimensions

609 citations

Journal ArticleDOI
TL;DR: LRBCs that combine characteristic features of block copolymers, e.g., self-assembly behavior, and light-responsive systems are reviewed, and the different photo-responsive moieties that have been incorporated so far are discussed.
Abstract: Stimuli-responsive polymers are the subject of intense research because they are able to show responses to various environmental changes. Among those stimuli, light has attracted much attention since it can be localized in time and space and it can also be triggered from outside of the system. In this paper, we review light-responsive block copolymers (LRBCs) that combine characteristic features of block copolymers, e.g., self-assembly behavior, and light-responsive systems. The different photo-responsive moieties that have been incorporated so far in block copolymers as well as the proposed applications are discussed.

293 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and self-assembly of metallo-supramolecular block copolymers have been reviewed and a review of recent developments in this field can be found.
Abstract: Supramolecular copolymers have become of increasing interest in recent years for the search of new materials with tunable properties. In particular, metallo-supramolecular block copolymers-copolymers in which the blocks are linked together by a metal-ligand complex-have seen important progresses, allowing better control over the synthetic strategies for various architectures, and providing a better understanding of the parameters governing their self-assembly. We review here recent developments on the synthesis and self-assembly of such materials achieved in this field.

151 citations

Journal ArticleDOI
11 Sep 2004-Langmuir
TL;DR: The results show that the pattern size has a rather strong influence on the deposited number of colloid layers and on the crystal quality.
Abstract: The influence of various experimental parameters on the vertical deposition and structure formation of colloidal crystals on chemically patterned surfaces, with hydrophilic and hydrophobic areas, was investigated. The pattern dimensions range from about 4 to 400 microm, which is much larger than the individual particle size (255 nm), to control the microscopic crystal shape rather than influencing the crystal lattice geometry (as achieved in colloidal epitaxy). The deposition resolution and selectivity were tested by varying the particle concentration in the suspension, the substrate withdrawing speed, pattern size and orientation, and wetting contrast between the hydrophilic and hydrophobic regions. The evolution of colloidal crystal thickness with respect to the pattern dimensions and deposition parameters was further studied. Our results show that the pattern size has a rather strong influence on the deposited number of colloid layers and on the crystal quality. Better results are obtained when the lines of a stripe pattern are oriented parallel to the withdrawing direction rather than perpendicular. The deposition resolution (defined as the minimum feature size on which particles can be deposited) depends on the wetting contrast and increases with lower average hydrophobicity of the substrate.

146 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness, while commercial readiness was based on known or anticipated material costs.
Abstract: Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic–organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein–polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology.

1,708 citations

Journal ArticleDOI
TL;DR: The authors provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005.
Abstract: This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.

1,612 citations

Journal ArticleDOI
TL;DR: This work presents a new mesoporous composite material suitable for high-performance liquid chromatography and shows good chiral recognition ability and high uniformity in various racemates.
Abstract: Dingcai Wu,*,† Fei Xu,† Bin Sun,† Ruowen Fu,† Hongkun He,‡ and Krzysztof Matyjaszewski*,‡ †Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China ‡Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States

1,455 citations