scispace - formally typeset
Search or ask a question
Author

Charles E. Leiserson

Bio: Charles E. Leiserson is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Cilk & Scheduling (computing). The author has an hindex of 65, co-authored 185 publications receiving 49312 citations. Previous affiliations of Charles E. Leiserson include Vassar College & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI
11 Jul 2018
TL;DR: Today, most application developers write code without much regard for how quickly it will run, but two technology trends of historic proportions are instigating a resurgence in software performance engineering, the art of making code run fast.
Abstract: Today, most application developers write code without much regard for how quickly it will run. Moreover, once the code is written, it is rare for it to be reengineered to run faster. But two technology trends of historic proportions are instigating a resurgence in software performance engineering, the art of making code run fast. The first is the emergence of cloud computing, where the economics of renting computation, as opposed to buying it, heightens the utility of application speed. The second is the end of Moore's Law, the 50-year technology trend which has, until recently, relentlessly doubled the number of transistors on a semiconductor chip every two years. The end of Moore's Law will cause industry to look beyond semiconductor manufacturers for computing performance. As a result of these two trends, application programmers will increasingly find themselves turning to software performance engineering in order to develop innovative products and applications.

2 citations

Proceedings ArticleDOI
20 Jul 1995
TL;DR: The circuit value update problem is the problem of updating values in a representation of a combinational circuit when some of the inputs are changed, easily solved on an ordinary serial computer in O(W+D) time.
Abstract: The circuit value update problem is the problem of updating values in a representation of a combinational circuit when some of the inputs are changed. We assume for simplicity that each combinational element has bounded fan-in and fan-out and can be evaluated in constant time. This problem is easily solved on an ordinary serial computer in O(W+D) time, where W is the number of elements in the altered subcircuit and D is the subcircuit's embedded depth (its depth measured in the original circuit).

2 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the problem of work stealing in multithreaded computations and obtained tight upper bounds on the number of steals when the computation can be modeled by rooted trees.
Abstract: Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with $n$ processors starts with one processor having a complete $k$-ary tree of height $h$ (and the remaining $n-1$ processors having nothing), the maximum possible number of steals is $\sum_{i=1}^n(k-1)^i\binom{h}{i}$.

2 citations

Proceedings ArticleDOI
22 Sep 2020
TL;DR: CAST_BLK as discussed by the authors is a parallel prefix-sum algorithm for floating-point prefix sums that uses the Problem Based Benchmark Suite (PBBS) three-stage strategy.
Abstract: Existing work-efficient parallel algorithms for floating-point prefix sums exhibit either good performance or good numerical accuracy, but not both. Consequently, prefix-sum algorithms cannot easily be used in scientific-computing applications that require both high performance and accuracy. We have designed and implemented two new algorithms, called CAST _BLK and PAIR_BLK, whose accuracy is significantly higher than that of the high-performing prefix-sum algorithm from the Problem Based Benchmark Suite, while running with comparable performance on modern multicore machines. Specifically, the root mean squared error of the PBBS code on a large array of uniformly distributed 64-bit floating-point numbers is 8 times higher than that of CAST _BLK and 5.8 times higher than that of PAIR_BLK. These two codes employ the PBBS three-stage strategy for performance, but they are designed to achieve high accuracy, both theoretically and in practice. A vectorization enhancement to these two scalar codes trades off a small amount of accuracy to match or outperform the PBBS code while still maintaining lower error.

1 citations


Cited by
More filters
Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

Proceedings Article
25 Jul 2004
TL;DR: Four different RouGE measures are introduced: ROUGE-N, ROUge-L, R OUGE-W, and ROUAGE-S included in the Rouge summarization evaluation package and their evaluations.
Abstract: ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It includes measures to automatically determine the quality of a summary by comparing it to other (ideal) summaries created by humans. The measures count the number of overlapping units such as n-gram, word sequences, and word pairs between the computer-generated summary to be evaluated and the ideal summaries created by humans. This paper introduces four different ROUGE measures: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S included in the ROUGE summarization evaluation package and their evaluations. Three of them have been used in the Document Understanding Conference (DUC) 2004, a large-scale summarization evaluation sponsored by NIST.

9,293 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: RADAR is presented, a radio-frequency (RF)-based system for locating and tracking users inside buildings that combines empirical measurements with signal propagation modeling to determine user location and thereby enable location-aware services and applications.
Abstract: The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF)-based system for locating and tracking users inside buildings. RADAR operates by recording and processing signal strength information at multiple base stations positioned to provide overlapping coverage in the area of interest. It combines empirical measurements with signal propagation modeling to determine user location and thereby enable location-aware services and applications. We present experimental results that demonstrate the ability of RADAR to estimate user location with a high degree of accuracy.

8,667 citations

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus.
Abstract: We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in...

8,017 citations