scispace - formally typeset
Search or ask a question
Author

Charles E. Thorpe

Bio: Charles E. Thorpe is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Mobile robot & Teleoperation. The author has an hindex of 53, co-authored 163 publications receiving 11219 citations. Previous affiliations of Charles E. Thorpe include United States Department of Transportation.


Papers
More filters
Journal ArticleDOI
TL;DR: A distributed architecture articulated around the CODGER (communication database with geometric reasoning) knowledge database is described for a mobile robot system that includes both perception and navigation tools.
Abstract: A distributed architecture articulated around the CODGER (communication database with geometric reasoning) knowledge database is described for a mobile robot system that includes both perception and navigation tools. Results are described for vision and navigation tests using a mobile testbed that integrates perception and navigation capabilities that are based on two types of vision algorithms: color vision for road following, and 3-D vision for obstacle detection and avoidance. The perception modules are integrated into a system that allows the vehicle to drive continuously in an actual outdoor environment. The resulting system is able to navigate continuously on roads while avoiding obstacles. >

780 citations

Journal ArticleDOI
TL;DR: Based on the SLAM with DATMO framework, practical algorithms are proposed which deal with issues of perception modeling, data association, and moving object detection.
Abstract: Simultaneous localization, mapping and moving object tracking (SLAMMOT) involves both simultaneous localization and mapping (SLAM) in dynamic environments and detecting and tracking these dynamic objects. In this paper, a mathematical framework is established to integrate SLAM and moving object tracking. Two solutions are described: SLAM with generalized objects, and SLAM with detection and tracking of moving objects (DATMO). SLAM with generalized objects calculates a joint posterior over all generalized objects and the robot. Such an approach is similar to existing SLAM algorithms, but with additional structure to allow for motion modeling of generalized objects. Unfortunately, it is computationally demanding and generally infeasible. SLAM with DATMO decomposes the estimation problem into two separate estimators. By maintaining separate posteriors for stationary objects and moving objects, the resulting estimation problems are much lower dimensional than SLAM with generalized objects. Both SLAM and moving object tracking from a moving vehicle in crowded urban areas are daunting tasks. Based on the SLAM with DATMO framework, practical algorithms are proposed which deal with issues of perception modeling, data association, and moving object detection. The implementation of SLAM with DATMO was demonstrated using data collected from the CMU Navlab11 vehicle at high speeds in crowded urban environments. Ample experimental results shows the feasibility of the proposed theory and algorithms.

662 citations

Journal ArticleDOI
01 Jun 1987
TL;DR: By reading vision and navigation the carnegie mellon navlab, you can take more advantages with limited budget.
Abstract: A distributed architecture articulated around the CODGER (communication database with geometric reasoning) knowledge database is described for a mobile robot system that includes both perception and navigation tools. Results are described for vision and navigation tests using a mobile testbed that integrates perception and navigation capabilities that are based on two types of vision algorithms: color vision for road following, and 3-D vision for obstacle detection and avoidance. The perception modules are integrated into a system that allows the vehicle to drive continuously in an actual outdoor environment. The resulting system is able to navigate continuously on roads while avoiding obstacles. >

445 citations

Journal ArticleDOI
TL;DR: An overview of vehicle teleoperation is provided and a summary of interfaces currently in use is presented, highlighting the need to be as efficient and as capable as possible.
Abstract: Despite advances in autonomy, there will always be a need for human involvement in vehicle teleoperation. In particular, tasks such as exploration, reconnaissance and surveillance will continue to require human supervision, if not guidance and direct control. Thus, it is critical that the operator interface be as efficient and as capable as possible. In this paper, we provide an overview of vehicle teleoperation and present a summary of interfaces currently in use.

437 citations

Proceedings ArticleDOI
10 Nov 2003
TL;DR: The Bayesian formula of the SLAM with DATMO problem is derived, which provides a solid basis for understanding and solving this problem, and a practical algorithm for performing DAT MO from a moving platform equipped with range sensors is provided.
Abstract: The simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) problem is not only to solve the SLAM problem in dynamic environments but also to detect and track these dynamic objects. In this paper, we derive the Bayesian formula of the SLAM with DATMO problem, which provides a solid basis for understanding and solving this problem. In addition, we provide a practical algorithm for performing DATMO from a moving platform equipped with range sensors. The probabilistic approach to solve the whole problem has been implemented with the Navlab11 vehicle. More than 100 miles of experiments in crowded urban areas indicated that SLAM with DATMO is indeed feasible.

363 citations


Cited by
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: This paper describes the simultaneous localization and mapping (SLAM) problem and the essential methods for solving the SLAM problem and summarizes key implementations and demonstrations of the method.
Abstract: This paper describes the simultaneous localization and mapping (SLAM) problem and the essential methods for solving the SLAM problem and summarizes key implementations and demonstrations of the method. While there are still many practical issues to overcome, especially in more complex outdoor environments, the general SLAM method is now a well understood and established part of robotics. Another part of the tutorial summarized more recent works in addressing some of the remaining issues in SLAM, including computation, feature representation, and data association

3,760 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes a new SfM technique that improves upon the state of the art to make a further step towards building a truly general-purpose pipeline.
Abstract: Incremental Structure-from-Motion is a prevalent strategy for 3D reconstruction from unordered image collections. While incremental reconstruction systems have tremendously advanced in all regards, robustness, accuracy, completeness, and scalability remain the key problems towards building a truly general-purpose pipeline. We propose a new SfM technique that improves upon the state of the art to make a further step towards this ultimate goal. The full reconstruction pipeline is released to the public as an open-source implementation.

3,050 citations

Journal ArticleDOI
TL;DR: The context for socially interactive robots is discussed, emphasizing the relationship to other research fields and the different forms of “social robots”, and a taxonomy of design methods and system components used to build socially interactive Robots is presented.

2,869 citations

Journal ArticleDOI
TL;DR: This survey reviews recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement.

2,738 citations