scispace - formally typeset
Search or ask a question
Author

Charles Edward Antoniak

Bio: Charles Edward Antoniak is an academic researcher. The author has contributed to research in topics: Dirichlet-multinomial distribution & Hierarchical Dirichlet process. The author has an hindex of 1, co-authored 1 publications receiving 2011 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the conditional distribution of the random measure, given the observations, is no longer that of a simple Dirichlet process, but can be described as being a mixture of DirICHlet processes.
Abstract: process. This paper extends Ferguson's result to cases where the random measure is a mixing distribution for a parameter which determines the distribution from which observations are made. The conditional distribution of the random measure, given the observations, is no longer that of a simple Dirichlet process, but can be described as being a mixture of Dirichlet processes. This paper gives a formal definition for these mixtures and develops several theorems about their properties, the most important of which is a closure property for such mixtures. Formulas for computing the conditional distribution are derived and applications to problems in bio-assay, discrimination, regression, and mixing distributions are given.

2,146 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work considers problems involving groups of data where each observation within a group is a draw from a mixture model and where it is desirable to share mixture components between groups, and considers a hierarchical model, specifically one in which the base measure for the childDirichlet processes is itself distributed according to a Dirichlet process.
Abstract: We consider problems involving groups of data where each observation within a group is a draw from a mixture model and where it is desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the well-known clustering property of the Dirichlet process provides a nonparametric prior for the number of mixture components within each group. Given our desire to tie the mixture models in the various groups, we consider a hierarchical model, specifically one in which the base measure for the child Dirichlet processes is itself distributed according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet processes necessarily share atoms. Thus, as desired, the mixture models in the different groups necessarily share mixture components. We discuss representations of hierarchical Dirichlet processes ...

3,755 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes and show convergence results for a general class of normal mixture models.
Abstract: We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation and are exemplified by special cases where data are modeled as a sample from mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models.

2,473 citations

Journal ArticleDOI
TL;DR: In this article, Markov chain methods for sampling from the posterior distribution of a Dirichlet process mixture model are presented, and two new classes of methods are presented. But neither of these methods is suitable for handling general models with non-conjugate priors.
Abstract: This article reviews Markov chain methods for sampling from the posterior distribution of a Dirichlet process mixture model and presents two new classes of methods. One new approach is to make Metropolis—Hastings updates of the indicators specifying which mixture component is associated with each observation, perhaps supplemented with a partial form of Gibbs sampling. The other new approach extends Gibbs sampling for these indicators by using a set of auxiliary parameters. These methods are simple to implement and are more efficient than previous ways of handling general Dirichlet process mixture models with non-conjugate priors.

2,320 citations

Journal ArticleDOI
TL;DR: Stochastic variational inference lets us apply complex Bayesian models to massive data sets, and it is shown that the Bayesian nonparametric topic model outperforms its parametric counterpart.
Abstract: We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets.

2,291 citations

Journal ArticleDOI
TL;DR: Two general types of Gibbs samplers that can be used to fit posteriors of Bayesian hierarchical models based on stick-breaking priors are presented and the blocked Gibbs sampler, based on an entirely different approach that works by directly sampling values from the posterior of the random measure.
Abstract: A rich and flexible class of random probability measures, which we call stick-breaking priors, can be constructed using a sequence of independent beta random variables. Examples of random measures that have this characterization include the Dirichlet process, its two-parameter extension, the two-parameter Poisson–Dirichlet process, finite dimensional Dirichlet priors, and beta two-parameter processes. The rich nature of stick-breaking priors offers Bayesians a useful class of priors for nonparametric problems, while the similar construction used in each prior can be exploited to develop a general computational procedure for fitting them. In this article we present two general types of Gibbs samplers that can be used to fit posteriors of Bayesian hierarchical models based on stick-breaking priors. The first type of Gibbs sampler, referred to as a Polya urn Gibbs sampler, is a generalized version of a widely used Gibbs sampling method currently employed for Dirichlet process computing. This method applies t...

1,701 citations