scispace - formally typeset
Search or ask a question
Author

Charles G. Skinner

Other affiliations: University of North Texas
Bio: Charles G. Skinner is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Amino acid & Biological activity. The author has an hindex of 18, co-authored 78 publications receiving 922 citations. Previous affiliations of Charles G. Skinner include University of North Texas.



Cited by
More filters
Book ChapterDOI
TL;DR: This chapter describes the advances with an emphasis on the structures of the alcohol dehydrogenases and the relationship between structure and function, and establishes that mammalian alcohol dehydrogensases have a distant evolutionary link to both the yeast and bacterial enzymes.
Abstract: Publisher Summary This chapter describes the advances with an emphasis on the structures of the alcohol dehydrogenases and the relationship between structure and function Yeast and mammalian alcohol dehydrogenase differ in substrate specificity and rate of catalytic activity The classic yeast enzyme is more specific for acetaldehyde and ethanol, which is consistent with its recognized physiological Significance to participate in alcohol fermentation at the end of the glycolytic pathway Enzyme forms with other functions and properties also occur in yeast The mammalian enzymes have broad substrate specificity and, even with primary alcohols, the maximum activity is not observed with ethanol Alcohols including ethanol, produced in the intestinal tracts mainly by bacterial actions, are found in the portal vein One physiological function of liver alcohol dehydrogenase may be to metabolize these products Structural studies have established that mammalian alcohol dehydrogenases have a distant evolutionary link to both the yeast and bacterial enzymes Ingested alcohol is metabolized to acetaldehyde mainly by the action of liver alcohol dehydrogenase

656 citations

Journal ArticleDOI
TL;DR: It is considered that, while in the immediate future biopesticides may continue to be limited mainly to niche and speciality markets, there is great potential for long-term development and growth, both in their own right and in providing leads in other areas of pest management science.
Abstract: A survey is given of the wide range of different materials and organisms that can be classified as biopesticides. Details are given of those currently of commercial importance, and future developments in this area are discussed. It is considered that, while in the immediate future biopesticides may continue to be limited mainly to niche and speciality markets, there is great potential for long-term development and growth, both in their own right and in providing leads in other areas of pest management science.

650 citations

Journal ArticleDOI
TL;DR: The experiments validating riboswitches as drug targets are summarized, the existing technology for riboswitch drug discovery is described and the challenges that may face ribos witch drug discoverers are discussed.
Abstract: New validated cellular targets are needed to reinvigorate antibacterial drug discovery. This need could potentially be filled by riboswitches-messenger RNA (mRNA) structures that regulate gene expression in bacteria. Riboswitches are unique among RNAs that serve as drug targets in that they have evolved to form structured and highly selective receptors for small drug-like metabolites. In most cases, metabolite binding to the receptor represses the expression of the gene(s) encoded by the mRNA. If a new metabolite analog were designed that binds to the receptor, the gene(s) regulated by that riboswitch could be repressed, with a potentially lethal effect to the bacteria. Recent work suggests that certain antibacterial compounds discovered decades ago function at least in part by targeting riboswitches. Herein we will summarize the experiments validating riboswitches as drug targets, describe the existing technology for riboswitch drug discovery and discuss the challenges that may face riboswitch drug discoverers.

437 citations