Author

# Charles H. Bennett

Other affiliations: University of California, Los Angeles, Williams College

Bio: Charles H. Bennett is an academic researcher from IBM. The author has contributed to research in topic(s): Quantum entanglement & Quantum channel. The author has an hindex of 60, co-authored 117 publication(s) receiving 67435 citation(s). Previous affiliations of Charles H. Bennett include University of California, Los Angeles & Williams College.

Topics: Quantum entanglement, Quantum channel, Quantum cryptography, Quantum information, Amplitude damping channel

##### Papers

More filters

••

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.

Abstract: An unknown quantum state \ensuremath{\Vert}\ensuremath{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations. To do so the sender, ``Alice,'' and the receiver, ``Bob,'' must prearrange the sharing of an EPR-correlated pair of particles. Alice makes a joint measurement on her EPR particle and the unknown quantum system, and sends Bob the classical result of this measurement. Knowing this, Bob can convert the state of his EPR particle into an exact replica of the unknown state \ensuremath{\Vert}\ensuremath{\varphi}〉 which Alice destroyed.

10,327 citations

01 Jan 1984

5,573 citations

••

TL;DR: The set of states accessible from an initial EPR state by one-particle operations are characterized and it is shown that in a sense they allow two bits to be encoded reliably in one spin-1/2 particle.

Abstract: As is well known, operations on one particle of an Einstein-Podolsky-Rosen (EPR) pair cannot influence the marginal statistics of measurements on the other particle. We characterize the set of states accessible from an initial EPR state by one-particle operations and show that in a sense they allow two bits to be encoded reliably in one spin-1/2 particle: One party, ``Alice,'' prepares an EPR pair and sends one of the particles to another party, ``Bob,'' who applies one of four unitary operators to the particle, and then returns it to Alice. By measuring the two particles jointly, Alice can now reliably learn which operator Bob used.

4,299 citations

••

Charles H. Bennett

^{1}, Charles H. Bennett^{2}, Charles H. Bennett^{3}, David P. DiVincenzo^{3}+8 more•Institutions (3)TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.

Abstract: Entanglement purification protocols (EPPs) and quantum error-correcting codes (QECCs) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbitrary quantum state |\ensuremath{\xi}〉 can be transmitted at some rate Q through a noisy channel \ensuremath{\chi} without degradation. We prove that an EPP involving one-way classical communication and acting on mixed state M^(\ensuremath{\chi}) (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel \ensuremath{\chi}) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts ${\mathit{D}}_{1}$(M) and ${\mathit{D}}_{2}$(M) that can be locally distilled from it by EPPs using one- and two-way classical communication, respectively, and give an exact expression for E(M) when M is Bell diagonal. While EPPs require classical communication, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way communication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way communication is available. We exhibit a family of codes based on universal hashing able to achieve an asymptotic Q (or D) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the decoder. \textcopyright{} 1996 The American Physical Society.

4,147 citations

••

[...]

TL;DR: A protocol for coin-tossing by exchange of quantum messages is presented, which is secure against traditional kinds of cheating, even by an opponent with unlimited computing power, but ironically can be subverted by use of a still subtler quantum phenomenon, the Einstein-Podolsky-Rosen paradox.

Abstract: When elementary quantum systems, such as polarized photons, are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media, e.g. a communications channel on which it is impossible in principle to eavesdrop without a high probability of disturbing the transmission in such a way as to be detected. Such a quantum channel can be used in conjunction with ordinary insecure classical channels to distribute random key information between two users with the assurance that it remains unknown to anyone else, even when the users share no secret information initially. We also present a protocol for coin-tossing by exchange of quantum messages, which is secure against traditional kinds of cheating, even by an opponent with unlimited computing power, but ironically can be subverted by use of a still subtler quantum phenomenon, the Einstein-Podolsky-Rosen paradox.

4,094 citations

##### Cited by

More filters

01 Dec 2010

TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.

Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,183 citations

••

[...]

Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,394 citations

••

Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations

••

15 Aug 1999

Abstract: Cryptosystem designers frequently assume that secrets will be manipulated in closed, reliable computing environments. Unfortunately, actual computers and microchips leak information about the operations they process. This paper examines specific methods for analyzing power consumption measurements to find secret keys from tamper resistant devices. We also discuss approaches for building cryptosystems that can operate securely in existing hardware that leaks information.

6,498 citations

••

[...]

TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.

Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,363 citations