scispace - formally typeset
Search or ask a question
Author

Charles H. Bennett

Bio: Charles H. Bennett is an academic researcher from IBM. The author has contributed to research in topics: Quantum entanglement & Quantum channel. The author has an hindex of 60, co-authored 117 publications receiving 67435 citations. Previous affiliations of Charles H. Bennett include University of California, Los Angeles & Williams College.


Papers
More filters
Book ChapterDOI
01 Feb 1991
TL;DR: Initial results from an apparatus and protocol designed to implement quantum public key distribution are described, by which two users exchange a random quantum transmission, consisting of very faint flashes of polarized light, which remains secure against an adversary with unlimited computing power.
Abstract: We describe initial results from an apparatus and protocol designed to implement quantum public key distribution, by which two users, who share no secret information initially: 1) exchange a random quantum transmission, consisting of very faint flashes of polarized light; 2) by subsequent public discussion of the sent and received versions of this transmission estimate the extent of eavesdropping that might have taken place on it, and finally 3) if this estimate is small enough, can distill from the sent and received versions a smaller body of shared random information (key), which is certifiably secret in the sense that any third party's expected information on it is an exponentially small fraction of one bit. Because the system depends on the uncertainty principle of quantum physics, instead of usual mathematical assumptions such as the difficulty of factoring, it remains secure against an adversary with unlimited computing power.

1,390 citations

Journal ArticleDOI
TL;DR: It is proved that relative to an oracle chosen uniformly at random with probability 1 the class $\NP$ cannot be solved on a quantum Turing machine (QTM) in time $o(2^{n/2})$.
Abstract: Recently a great deal of attention has been focused on quantum computation following a sequence of results [Bernstein and Vazirani, in Proc. 25th Annual ACM Symposium Theory Comput., 1993, pp. 11--20, SIAM J. Comput., 26 (1997), pp. 1277--1339], [Simon, in Proc. 35th Annual IEEE Symposium Foundations Comput. Sci., 1994, pp. 116--123, SIAM J. Comput., 26 (1997), pp. 1340--1349], [Shor, in Proc. 35th Annual IEEE Symposium Foundations Comput. Sci., 1994, pp. 124--134] suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor's result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of $\NP$ can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random with probability 1 the class $\NP$ cannot be solved on a quantum Turing machine (QTM) in time $o(2^{n/2})$. We also show that relative to a permutation oracle chosen uniformly at random with probability 1 the class $\NP \cap \coNP$ cannot be solved on a QTM in time $o(2^{n/3})$. The former bound is tight since recent work of Grover [in {\it Proc.\ $28$th Annual ACM Symposium Theory Comput.}, 1996] shows how to accept the class $\NP$ relative to any oracle on a quantum computer in time $O(2^{n/2})$.

1,265 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted.
Abstract: We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even if the observers are allowed any sequence of local operations and classical communication between the separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted. This result implies the existence of separable superoperators that cannot be implemented locally. A set of states are found involving three two-state particles that also appear to be nonmeasurable locally. These and other multipartite states are classified according to the entropy and entanglement costs of preparing and measuring them by local operations.

957 citations

Journal ArticleDOI
TL;DR: This paper investigates how the use of a channel with perfect authenticity but no privacy can be used to repair the defects of a channels with imperfect privacy but no authenticity.
Abstract: In this paper, we investigate how the use of a channel with perfect authenticity but no privacy can be used to repair the defects of a channel with imperfect privacy but no authenticity. More preci...

947 citations

Journal ArticleDOI
TL;DR: It is shown that the asymptotic classical communication cost of RSP is one bit per qubit--half that of teleportation--and even less when transmitting part of a known entangled state.
Abstract: Quantum teleportation uses prior entanglement and forward classical communication to transmit one instance of an unknown quantum state. Remote state preparation (RSP) has the same goal, but the sender knows classically what state is to be transmitted. We show that the asymptotic classical communication cost of RSP is one bit per qubit--half that of teleportation--and even less when transmitting part of a known entangled state. We explore the tradeoff between entanglement and classical communication required for RSP, and discuss RSP capacities of general quantum channels.

745 citations


Cited by
More filters
01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms on a quantum computer and gave an efficient randomized algorithm for these two problems, which takes a number of steps polynomial in the input size of the integer to be factored.
Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Abstract: This chapter describes the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics. A computer which will give the same probabilities as the quantum system does. The present theory of physics allows space to go down into infinitesimal distances, wavelengths to get infinitely great, terms to be summed in infinite order, and so forth; and therefore, if this proposition is right, physical law is wrong. Quantum theory and quantizing is a very specific type of theory. The chapter talks about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature. There are interesting philosophical questions about reasoning, and relationship, observation, and measurement and so on, which computers have stimulated people to think about anew, with new types of thinking.

7,202 citations

Journal ArticleDOI
TL;DR: An overview of the CHARMM program as it exists today is provided with an emphasis on developments since the publication of the original CHARMM article in 1983.
Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu- lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio- logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estima- tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer- ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.

7,035 citations