scispace - formally typeset
Search or ask a question
Author

Charles H. Lineweaver

Bio: Charles H. Lineweaver is an academic researcher from Australian National University. The author has contributed to research in topics: Cosmic microwave background & Terrestrial planet. The author has an hindex of 47, co-authored 177 publications receiving 8592 citations. Previous affiliations of Charles H. Lineweaver include Macquarie University & Mount Stromlo Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the first year of data from the differential microwave radiometers on the Cosmic Background Explorer was presented, and the angular autocorrelation of the signal in each radiometer channel and cross-correlation between channels were consistent and gave a primordial fluctuation power-law spectrum with index of 1.1 +/- 0.5, and an rms-quadrupole-normalized amplitude of 16 +/- 4 micro-K.
Abstract: Results of the first year of data from the differential microwave radiometers on the Cosmic Background Explorer are presented. Statistically significant structure that is well described as scale-invariant fluctuations with a Gaussian distribution is shown. The rms sky variation, smoothed to a total 10-deg FWHM Gaussian, is 30 +/-5 micro-K for Galactic latitude greater than 20-deg data with the dipole anisotropy removed. The rms cosmic quadrupole amplitude is 13 +/-4 micro-K. The angular autocorrelation of the signal in each radiometer channel and cross-correlation between channels are consistent and give a primordial fluctuation power-law spectrum with index of 1.1 +/-0.5, and an rms-quadrupole-normalized amplitude of 16 +/-4 micro-K. These features are in accord with the Harrison-Zel'dovich spectrum predicted by models of inflationary cosmology.

2,195 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the close companions (orbital period <5 yr) of nearby Sun-like stars and verified the existence of a very dry brown dwarf desert and described it quantitatively.
Abstract: Sun-like stars have stellar, brown dwarf, and planetary companions. To help constrain their formation and migration scenarios, we analyze the close companions (orbital period <5 yr) of nearby Sun-like stars. By using the same sample to extract the relative numbers of stellar, brown dwarf, and planetary companions, we verify the existence of a very dry brown dwarf desert and describe it quantitatively. With decreasing mass, the companion mass function drops by almost 2 orders of magnitude from 1 M☉ stellar companions to the brown dwarf desert and then rises by more than an order of magnitude from brown dwarfs to Jupiter-mass planets. The slopes of the planetary and stellar companion mass functions are of opposite sign and are incompatible at the 3 σ level, thus yielding a brown dwarf desert. The minimum number of companions per unit interval in log mass (the driest part of the desert) is at M = 31MJ. Approximately 16% of Sun-like stars have close (P < 5 yr) companions more massive than Jupiter: 11% ± 3% are stellar, <1% are brown dwarf, and 5% ± 2% are giant planets. The steep decline in the number of companions in the brown dwarf regime, compared to the initial mass function of individual stars and free-floating brown dwarfs, suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits.

367 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data.
Abstract: We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude ΔT=3.365±0.027 mK toward direction (l II , b II )=(264°.4±0°.3, 48°.4±0°.5). The implied velocity of the Local Group with respect to the CMB rest frame is v LG =627±22 km s −1 toward (l II , b II )=(276°±3°, 30°±3°). DMR has also mapped the dipole anisotropy resulting from the Earth's orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature T 0 at 31.5, 53, and 90 GHz, T 0 =2.75±0.05 K

338 citations

Journal ArticleDOI
02 Jan 2004-Science
TL;DR: In this article, the authors modeled the evolution of the Milky Way Galaxy to trace the distribution in space and time of four prerequisites for complex life: the presence of a host star, enough heavy elements to form terrestrial planets, sufficient time for biological evolution, and an environment free of life-extinguishing supernovae.
Abstract: We modeled the evolution of the Milky Way Galaxy to trace the distribution in space and time of four prerequisites for complex life: the presence of a host star, enough heavy elements to form terrestrial planets, sufficient time for biological evolution, and an environment free of life-extinguishing supernovae. We identified the Galactic habitable zone (GHZ) as an annular region between 7 and 9 kiloparsecs from the Galactic center that widens with time and is composed of stars that formed between 8 and 4 billion years ago. This GHZ yields an age distribution for the complex life that may inhabit our Galaxy. We found that 75% of the stars in the GHZ are older than the Sun.

331 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data.
Abstract: We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earth's orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.

292 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations