scispace - formally typeset
Search or ask a question
Author

Charles Herder

Bio: Charles Herder is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Physical unclonable function & Stateless protocol. The author has an hindex of 9, co-authored 22 publications receiving 1059 citations. Previous affiliations of Charles Herder include University of Houston–Clear Lake & Baylor College of Medicine.

Papers
More filters
Journal ArticleDOI
30 May 2014
TL;DR: This paper motivates the use of PUFs versus conventional secure nonvolatile memories, defines the two primary PUF types, and describes strong and weak PUF implementations and their use for low-cost authentication and key generation applications.
Abstract: This paper describes the use of physical unclonable functions (PUFs) in low-cost authentication and key generation applications. First, it motivates the use of PUFs versus conventional secure nonvolatile memories and defines the two primary PUF types: “strong PUFs” and “weak PUFs.” It describes strong PUF implementations and their use for low-cost authentication. After this description, the paper covers both attacks and protocols to address errors. Next, the paper covers weak PUF implementations and their use in key generation applications. It covers error-correction schemes such as pattern matching and index-based coding. Finally, this paper reviews several emerging concepts in PUF technologies such as public model PUFs and new PUF implementation technologies.

977 citations

Journal ArticleDOI
TL;DR: A fuzzy extractor whose security can be reduced to the hardness of Learning Parity with Noise (LPN) and can efficiently correct a constant fraction of errors in a biometric source with a “noise-avoiding trapdoor” is presented.
Abstract: We present a fuzzy extractor whose security can be reduced to the hardness of Learning Parity with Noise (LPN) and can efficiently correct a constant fraction of errors in a biometric source with a “noise-avoiding trapdoor.” Using this computational fuzzy extractor, we present a stateless construction of a cryptographically-secure Physical Unclonable Function. Our construct requires no non-volatile (permanent) storage, secure or otherwise, and its computational security can be reduced to the hardness of an LPN variant under the random oracle model. The construction is “stateless,” because there is no information stored between subsequent queries, which mitigates attacks against the PUF via tampering. Moreover, our stateless construction corresponds to a PUF whose outputs are free of noise because of internal error-correcting capability, which enables a host of applications beyond authentication. We describe the construction, provide a proof of computational security, analysis of the security parameter for system parameter choices, and present experimental evidence that the construction is practical and reliable under a wide environmental range.

85 citations

Journal ArticleDOI
TL;DR: A fiber-coupled superconducting nanowire single-photon detector system in a close-cycled cryocooler achieved 24% and 22% system detection efficiencies at wavelengths of 1550 and 1315 nm, respectively.
Abstract: We developed a fiber-coupled superconducting nanowire single-photon detector system in a close-cycled cryocooler and achieved 24% and 22% system detection efficiencies at wavelengths of 1550 and 1315 nm, respectively. The maximum dark count rate was approximately 1000 counts/s.

74 citations

Journal ArticleDOI
TL;DR: In this paper, an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates was developed.
Abstract: We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

42 citations

Journal ArticleDOI
TL;DR: The gas phase acidities GPA of the most stable tautomers of adenine, guanine, cytosine, uracil and thymine are evaluated and the most acidic hydrogens in the nucleotides are replaced by the sugar in DNA and RNA.

39 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 2018
TL;DR: This Review Article examines the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, theirresistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation.
Abstract: Modern computers are based on the von Neumann architecture in which computation and storage are physically separated: data are fetched from the memory unit, shuttled to the processing unit (where computation takes place) and then shuttled back to the memory unit to be stored. The rate at which data can be transferred between the processing unit and the memory unit represents a fundamental limitation of modern computers, known as the memory wall. In-memory computing is an approach that attempts to address this issue by designing systems that compute within the memory, thus eliminating the energy-intensive and time-consuming data movement that plagues current designs. Here we review the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, their resistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation. We examine the different digital, analogue, and stochastic computing schemes that have been proposed, and explore the microscopic physical mechanisms involved. Finally, we discuss the challenges in-memory computing faces, including the required scaling characteristics, in delivering next-generation computing. This Review Article examines the development of in-memory computing using resistive switching devices.

1,193 citations

Journal ArticleDOI
TL;DR: In this article, a fiber-coupled single-photon detection system using amorphous tungsten silicide superconducting nanowire detectors was developed, and the system detection efficiency was higher than 90% in the wavelength range between 1520 nm and 1610 nm.
Abstract: Researchers develop a fiber-coupled single-photon-detection system using amorphous tungsten silicide superconducting nanowire single-photon detectors. The system detection efficiency is higher than 90% in the wavelength range between 1520 nm and 1610 nm. The device dark-count rate, timing jitter and reset time are 1 cps, 150 ps and 40 ns, respectively.

1,051 citations

Journal ArticleDOI
TL;DR: In this article, a review of the evolution of single-photon detectors based on superconducting nanowires (SSPDs) is presented, and a detailed snapshot of an emerging superconducted detector technology on the threshold of maturity is presented.
Abstract: Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity.

923 citations

01 Jan 2013
TL;DR: In this paper, a fiber-coupled single-photon detection system using amorphous tungsten silicide superconducting nanowire detectors was developed, and the system detection efficiency was higher than 90% in the wavelength range between 1520 nm and 1610 nm.
Abstract: Researchers develop a fiber-coupled single-photon-detection system using amorphous tungsten silicide superconducting nanowire single-photon detectors. The system detection efficiency is higher than 90% in the wavelength range between 1520 nm and 1610 nm. The device dark-count rate, timing jitter and reset time are 1 cps, 150 ps and 40 ns, respectively.

852 citations

Journal ArticleDOI
An Chen1
TL;DR: High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures, and Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage.
Abstract: This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power ( e.g. , mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g. , neuromorphic computing, hardware security, etc . In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

434 citations