scispace - formally typeset
Search or ask a question
Author

Charles J. David

Bio: Charles J. David is an academic researcher from Tsinghua University. The author has contributed to research in topics: Alternative splicing & RNA splicing. The author has an hindex of 13, co-authored 19 publications receiving 2984 citations. Previous affiliations of Charles J. David include Memorial Sloan Kettering Cancer Center & Columbia University.

Papers
More filters
Journal ArticleDOI
21 Jan 2010-Nature
TL;DR: A pathway that regulates an alternative splicing event required for tumour cell proliferation is defined, establishing a relevance to cancer, and it is demonstrated that human gliomas overexpress c-Myc, PTB, hnRNPA1 and hn RNPA2 in a manner that correlates with PKM2 expression.
Abstract: When oxygen is abundant, quiescent cells efficiently extract energy from glucose primarily by oxidative phosphorylation, whereas under the same conditions tumour cells consume glucose more avidly, converting it to lactate. This long-observed phenomenon is known as aerobic glycolysis, and is important for cell growth. Because aerobic glycolysis is only useful to growing cells, it is tightly regulated in a proliferation-linked manner. In mammals, this is partly achieved through control of pyruvate kinase isoform expression. The embryonic pyruvate kinase isoform, PKM2, is almost universally re-expressed in cancer, and promotes aerobic glycolysis, whereas the adult isoform, PKM1, promotes oxidative phosphorylation. These two isoforms result from mutually exclusive alternative splicing of the PKM pre-mRNA, reflecting inclusion of either exon 9 (PKM1) or exon 10 (PKM2). Here we show that three heterogeneous nuclear ribonucleoprotein (hnRNP) proteins, polypyrimidine tract binding protein (PTB, also known as hnRNPI), hnRNPA1 and hnRNPA2, bind repressively to sequences flanking exon 9, resulting in exon 10 inclusion. We also demonstrate that the oncogenic transcription factor c-Myc upregulates transcription of PTB, hnRNPA1 and hnRNPA2, ensuring a high PKM2/PKM1 ratio. Establishing a relevance to cancer, we show that human gliomas overexpress c-Myc, PTB, hnRNPA1 and hnRNPA2 in a manner that correlates with PKM2 expression. Our results thus define a pathway that regulates an alternative splicing event required for tumour cell proliferation.

966 citations

Journal ArticleDOI
TL;DR: Emerging insights into this process indicate that pathways that are frequently deregulated in cancer often play important roles in promoting aberrant splicing, which in turn contributes to all aspects of tumor biology.
Abstract: Alternative splicing of mRNA precursors is a nearly ubiquitous and extremely flexible point of gene control in humans. It provides cells with the opportunity to create protein isoforms of differing, even opposing, functions from a single gene. Cancer cells often take advantage of this flexibility to produce proteins that promote growth and survival. Many of the isoforms produced in this manner are developmentally regulated and are preferentially re-expressed in tumors. Emerging insights into this process indicate that pathways that are frequently deregulated in cancer often play important roles in promoting aberrant splicing, which in turn contributes to all aspects of tumor biology.

754 citations

Journal ArticleDOI
TL;DR: Transforming growth factor-β (TGFβ) family cytokines are important regulators of cell fate with pleiotropic roles in development, tissue homeostasis, regeneration and tumorigenesis, and recent studies revealed that this context dependency relies on the convergence between TGFβ signals and other contextual inputs.
Abstract: Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.

497 citations

Journal ArticleDOI
25 Feb 2016-Cell
TL;DR: It is shown that TGF-β tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network, including the repression of the gastrointestinal lineage-master regulator Klf5.

444 citations

Journal ArticleDOI
08 Jan 2020-Nature
TL;DR: RREB1 provides a molecular link between RAS and TGF-β pathways for coordinated induction of developmental and fibrogenic EMTs, and increases the understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer.
Abstract: Epithelial-to-mesenchymal transitions (EMTs) are phenotypic plasticity processes that confer migratory and invasive properties to epithelial cells during development, wound-healing, fibrosis and cancer1–4. EMTs are driven by SNAIL, ZEB and TWIST transcription factors5,6 together with microRNAs that balance this regulatory network7,8. Transforming growth factor β (TGF-β) is a potent inducer of developmental and fibrogenic EMTs4,9,10. Aberrant TGF-β signalling and EMT are implicated in the pathogenesis of renal fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, pulmonary fibrosis and cancer4,11. TGF-β depends on RAS and mitogen-activated protein kinase (MAPK) pathway inputs for the induction of EMTs12–19. Here we show how these signals coordinately trigger EMTs and integrate them with broader pathophysiological processes. We identify RAS-responsive element binding protein 1 (RREB1), a RAS transcriptional effector20,21, as a key partner of TGF-β-activated SMAD transcription factors in EMT. MAPK-activated RREB1 recruits TGF-β-activated SMAD factors to SNAIL. Context-dependent chromatin accessibility dictates the ability of RREB1 and SMAD to activate additional genes that determine the nature of the resulting EMT. In carcinoma cells, TGF-β–SMAD and RREB1 directly drive expression of SNAIL and fibrogenic factors stimulating myofibroblasts, promoting intratumoral fibrosis and supporting tumour growth. In mouse epiblast progenitors, Nodal–SMAD and RREB1 combine to induce expression of SNAIL and mesendoderm-differentiation genes that drive gastrulation. Thus, RREB1 provides a molecular link between RAS and TGF-β pathways for coordinated induction of developmental and fibrogenic EMTs. These insights increase our understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer. RAS and TGF-β pathways regulate distinct modes of epithelial-to-mesenchymal transition via RAS-responsive element binding protein 1.

212 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function.
Abstract: Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.

2,387 citations

Journal ArticleDOI
TL;DR: Otto Warburg's observations are re-examine in relation to the current concepts of cancer metabolism as being intimately linked to alterations of mitochondrial DNA, oncogenes and tumour suppressors, and thus readily exploitable for cancer therapy.
Abstract: Otto Warburg pioneered quantitative investigations of cancer cell metabolism, as well as photosynthesis and respiration. Warburg and co-workers showed in the 1920s that, under aerobic conditions, tumour tissues metabolize approximately tenfold more glucose to lactate in a given time than normal tissues, a phenomenon known as the Warburg effect. However, this increase in aerobic glycolysis in cancer cells is often erroneously thought to occur instead of mitochondrial respiration and has been misinterpreted as evidence for damage to respiration instead of damage to the regulation of glycolysis. In fact, many cancers exhibit the Warburg effect while retaining mitochondrial respiration. We re-examine Warburg's observations in relation to the current concepts of cancer metabolism as being intimately linked to alterations of mitochondrial DNA, oncogenes and tumour suppressors, and thus readily exploitable for cancer therapy.

2,312 citations

Journal ArticleDOI
TL;DR: Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Abstract: Intrinsically disordered proteins (IDPs) are key components of the cellular signalling machinery. Their flexible conformation enables them to interact with different partners and to participate in the assembly of signalling complexes and membrane-less organelles; this leads to different cellular outcomes. Post-translational modification of IDPs and alternative splicing add complexity to regulatory networks.

1,756 citations

Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: The results provide the first evidence indicating that genetic alterations of the major splicing components could be involved in human pathogenesis, also implicating a novel therapeutic possibility for myelodysplasia.
Abstract: Myelodysplastic syndromes and related disorders (myelodysplasia) are a heterogeneous group of myeloid neoplasms showing deregulated blood cell production with evidence of myeloid dysplasia and a predisposition to acute myeloid leukaemia, whose pathogenesis is only incompletely understood. Here we report whole-exome sequencing of 29 myelodysplasia specimens, which unexpectedly revealed novel pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large series analysis, these splicing pathway mutations were frequent (∼45 to ∼85%) in, and highly specific to, myeloid neoplasms showing features of myelodysplasia. Conspicuously, most of the mutations, which occurred in a mutually exclusive manner, affected genes involved in the 3'-splice site recognition during pre-mRNA processing, inducing abnormal RNA splicing and compromised haematopoiesis. Our results provide the first evidence indicating that genetic alterations of the major splicing components could be involved in human pathogenesis, also implicating a novel therapeutic possibility for myelodysplasia.

1,746 citations