scispace - formally typeset
Search or ask a question
Author

Charles J. Lowenstein

Bio: Charles J. Lowenstein is an academic researcher from University of Rochester Medical Center. The author has contributed to research in topics: Nitric oxide synthase & Nitric oxide. The author has an hindex of 68, co-authored 181 publications receiving 27741 citations. Previous affiliations of Charles J. Lowenstein include University of Texas Southwestern Medical Center & United States Department of Veterans Affairs.


Papers
More filters
Journal ArticleDOI
27 Jun 1991-Nature
TL;DR: Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors.
Abstract: Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

2,302 citations

Journal ArticleDOI
TL;DR: It is demonstrated that microRNAs (miRNAs) are important components of the p53 transcriptional network and miR-34a-responsive genes are highly enriched for those that regulate cell-cycle progression, apoptosis, DNA repair, and angiogenesis.

2,008 citations

Journal ArticleDOI
01 Jun 1995-Immunity
TL;DR: The data from both models established that TNF alpha and the 55 kDa TNF receptor are essential for protection against tuberculosis in mice, and for reactive nitrogen production by macrophages early in infection.

1,662 citations

Journal ArticleDOI
TL;DR: Analysis of the effector phase of tumor rejection induced by vaccination with irradiated tumor cells transduced to secrete granulocyte/macrophage colony-stimulating factor indicates a far broader role for CD4+ T cells in orchestrating the host response to tumor.
Abstract: The induction of optimal systemic antitumor immunity involves the priming of both CD4+ and CD8+ T cells specific for tumor-associated antigens. The role of CD4+ T helper cells (Th) in this response has been largely attributed to providing regulatory signals required for the priming of major histocompatibility complex class I restricted CD8+ cytolytic T lymphocytes, which are thought to serve as the dominant effector cell mediating tumor killing. However, analysis of the effector phase of tumor rejection induced by vaccination with irradiated tumor cells transduced to secrete granulocyte/macrophage colony-stimulating factor indicates a far broader role for CD4+ T cells in orchestrating the host response to tumor. This form of immunization leads to the simultaneous induction of Th1 and Th2 responses, both of which are required for maximal systemic antitumor immunity. Cytokines produced by these CD4+ T cells activate eosinophils as well as macrophages that produce both superoxide and nitric oxide. Both of these cell types then collaborate within the site of tumor challenge to cause its destruction.

1,334 citations

Journal ArticleDOI
TL;DR: It is shown that the microRNA miR-34a regulates silent information regulator 1 (SIRT1) expression, which functions as a tumor suppressor, in part, through a SIRT1-p53 pathway.
Abstract: MicroRNA 34a (miR-34a) is a tumor suppressor gene, but how it regulates cell proliferation is not completely understood. We now show that the microRNA miR-34a regulates silent information regulator 1 (SIRT1) expression. MiR-34a inhibits SIRT1 expression through a miR-34a-binding site within the 3′ UTR of SIRT1. MiR-34 inhibition of SIRT1 leads to an increase in acetylated p53 and expression of p21 and PUMA, transcriptional targets of p53 that regulate the cell cycle and apoptosis, respectively. Furthermore, miR-34 suppression of SIRT1 ultimately leads to apoptosis in WT human colon cancer cells but not in human colon cancer cells lacking p53. Finally, miR-34a itself is a transcriptional target of p53, suggesting a positive feedback loop between p53 and miR-34a. Thus, miR-34a functions as a tumor suppressor, in part, through a SIRT1-p53 pathway.

1,238 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
TL;DR: The discovery that mammalian cells generate nitric oxide, a gas previously considered to be merely an atmospheric pollutant, is providing important information about many biologic processes.
Abstract: The discovery that mammalian cells generate nitric oxide, a gas previously considered to be merely an atmospheric pollutant, is providing important information about many biologic processes. Nitric oxide is synthesized from the amino acid L-arginine by a family of enzymes, the nitric oxide synthases, through a hitherto unrecognized metabolic route -- namely, the L-arginine-nitric oxide pathway1–8. The synthesis of nitric oxide by vascular endothelium is responsible for the vasodilator tone that is essential for the regulation of blood pressure. In the central nervous system nitric oxide is a neurotransmitter that underpins several functions, including the formation of memory. . . .

6,464 citations

Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.

5,937 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations