scispace - formally typeset
Search or ask a question
Author

Charles K. Chui

Bio: Charles K. Chui is an academic researcher from Hong Kong Baptist University. The author has contributed to research in topics: Wavelet & Spline (mathematics). The author has an hindex of 51, co-authored 317 publications receiving 17478 citations. Previous affiliations of Charles K. Chui include University of Missouri–St. Louis & Zoran Corporation.


Papers
More filters
Book
01 Jan 1992
TL;DR: An Overview: From Fourier Analysis to Wavelet Analysis, Multiresolution Analysis, Splines, and Wavelets.
Abstract: An Overview: From Fourier Analysis to Wavelet Analysis. The Integral Wavelet Transform and Time-Frequency Analysis. Inversion Formulas and Duals. Classification of Wavelets. Multiresolution Analysis, Splines, and Wavelets. Wavelet Decompositions and Reconstructions. Fourier Analysis: Fourier and Inverse Fourier Transforms. Continuous-Time Convolution and the Delta Function. Fourier Transform of Square-Integrable Functions. Fourier Series. Basic Convergence Theory and Poisson's Summation Formula. Wavelet Transforms and Time-Frequency Analysis: The Gabor Transform. Short-Time Fourier Transforms and the Uncertainty Principle. The Integral Wavelet Transform. Dyadic Wavelets and Inversions. Frames. Wavelet Series. Cardinal Spline Analysis: Cardinal Spline Spaces. B-Splines and Their Basic Properties. The Two-Scale Relation and an Interpolatory Graphical Display Algorithm. B-Net Representations and Computation of Cardinal Splines. Construction of Spline Approximation Formulas. Construction of Spline Interpolation Formulas. Scaling Functions and Wavelets: Multiresolution Analysis. Scaling Functions with Finite Two-Scale Relations. Direct-Sum Decompositions of L2(R). Wavelets and Their Duals. Linear-Phase Filtering. Compactly Supported Wavelets. Cardinal Spline-Wavelets: Interpolaratory Spline-Wavelets. Compactly Supported Spline-Wavelets. Computation of Cardinal Spline-Wavelets. Euler-Frobenius Polynomials. Error Analysis in Spline-Wavelet Decomposition. Total Positivity, Complete Oscillation, Zero-Crossings. Orthogonal Wavelets and Wavelet Packets: Examples of Orthogonal Wavelets. Identification of Orthogonal Two-Scale Symbols. Construction of Compactly Supported Orthogonal Wavelets. Orthogonal Wavelet Packets. Orthogonal Decomposition of Wavelet Series. Notes. References. Subject Index. Appendix.

3,992 citations

Journal ArticleDOI
TL;DR: The two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme that uses the 3D cat map to shuffle the positions of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks.
Abstract: Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. Due to the exceptionally desirable properties of mixing and sensitivity to initial conditions and parameters of chaotic maps, chaos-based encryption has suggested a new and efficient way to deal with the intractable problem of fast and highly secure image encryption. In this paper, the two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme. This new scheme employs the 3D cat map to shuffle the positions (and, if desired, grey values as well) of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security and fast encryption speed of the new scheme.

1,904 citations

Book
01 Jan 1987
TL;DR: Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection.
Abstract: "Kalman Filtering with Real-Time Applications" presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. The last two topics are new additions to this third edition. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge.

1,086 citations

Book
31 Jan 1992
TL;DR: A.G. Unser and A.Aldroubi as discussed by the authors constructed a block spin construction of wavelets with boundary conditions on the interval, P.A. Berger and Y.W. Wickerhauser constructed wavelet-like local bases wavelets and other bases for fast numerical linear algebra, B.C. Burrus second generation compact image coding with wavelets, J. Froment and S. Mallat acoustic signal compression with wavelet packets, M.
Abstract: Orthogonal wavelets daubechies' scaling function on (0.3), D. Pollen wavelet matrices and the representation of discrete functions, P.N. Heller, et al wavelets and generalized functions, G.G. Walter semi-orthogonal and nonorthogonal wavelets cardinal spline interpolation and teh block spin construction of wavelets, G. Battle polynomial splines and wavelets - a signal processing perspective, M. Unser and A. Aldroubi biorthogonal wavelets, A. Cohen nonorthogonal multiresolution analysis using wavelets, J.C. Feauveau wavelet-like local bases wavelets and other bases for fast numerical linear algebra, B.K. Alpert wavelets with boundary conditions on the interval, P. Aushcer local sine and cosine bases of coifman and meyer and the construction of smooth wae-lets, P. Auscher, et al some elementary properties of multiresolution analysis of L2 (Rn), W.R. Madych multi-dimensional two-scale dilation equations, M.A. Berger and Y. Wang multivariate wavelets short-time fourier and window-radon transforms, J. Stockler gabor wavelets and the heisenberg group, H.G. Feichtinger and K. Grochenig gabor expansions and short time fourier transform from the group theoetical point of view windowed radon transforms, analytic signals and the wave equation theory of sampling and interpolation, G. Kaiser and R.F. Streater irregular sampling and frames, J.J. Benedetto families of wavelet tranforms in connections with Shannon's sampling theory and the gabor tranform, A.Aldroubi and M. Unser wavelets in H2(R), K. Seip sampling, interpolation and phase space density applications to numerical analysis and signal processing orthonormal wave-lets, analysis of operators and applications to numerical analysis, S. Jaffard and Ph. Laurencot wavelet transforms and filter banks, R.A. Gopinath and C.S. Burrus second generation compact image coding with wavelets, J. Froment and S. Mallat acoustic signal compression with wavelet packets, M.V. Wickerhauser.

752 citations

Journal ArticleDOI
TL;DR: The result is a new filter capable of reducing both Gaussian and impulse noises from noisy images effectively, which performs remarkably well, both in terms of quantitative measures of signal restoration and qualitative judgements of image quality.
Abstract: We introduce a local image statistic for identifying noise pixels in images corrupted with impulse noise of random values. The statistical values quantify how different in intensity the particular pixels are from their most similar neighbors. We continue to demonstrate how this statistic may be incorporated into a filter designed to remove additive Gaussian noise. The result is a new filter capable of reducing both Gaussian and impulse noises from noisy images effectively, which performs remarkably well, both in terms of quantitative measures of signal restoration and qualitative judgements of image quality. Our approach is extended to automatically remove any mix of Gaussian and impulse noise.

592 citations


Cited by
More filters
Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Abstract: The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1 Furthermore, efficient calculation of the virial tensor follows Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N) For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less

17,897 citations

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients, and achieved a performance within a factor log 2 n of the ideal performance of piecewise polynomial and variable-knot spline methods.
Abstract: SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle offers dramatic advantages over traditional linear estimation by nonadaptive kernels; however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. We show that variable-knot spline fits and piecewise-polynomial fits, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality in multivariate normal decision theory which we call the oracle inequality shows that attained performance differs from ideal performance by at most a factor of approximately 2 log n, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.

8,153 citations