scispace - formally typeset
Search or ask a question
Author

Charles Kittel

Bio: Charles Kittel is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Solid-state physics & Cyclotron resonance. The author has an hindex of 16, co-authored 27 publications receiving 51297 citations.

Papers
More filters
Journal ArticleDOI

23,110 citations

Book
01 Jan 1953
TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

21,954 citations

Book
01 Jan 1963
TL;DR: In this paper, the Hartree-Forck approximation is used to calculate energy bands and Fermi Surfaces for semiconductor crystals. But the results of the energy bands do not cover the entire crystal lattice.
Abstract: Mathematical Introduction. Acoustic Phonons. Plasmons, Optical Phonons, and Polarization Waves. Magnons. Fermion Fields and the Hartree--Forck Approximation. Many--Body Techniques and the Electron Gas. Polarons and the Electron--Phonon Interaction. Superconductivity. Bloch Funcations----General Properties. Brillouin Zones and Crystal Symmetry. Dynamics of Electronics in a Magnetic Field: de Hass--van Alphen Effect and Cyclotron Resonance. Magnetoresistance. Calculation of Energy Bands and Fermi Surfaces. Semiconductor Crystals: I. Energy Bands, Cyclotron Resonance and Impurity States. Semiconductor Crystals: II. Optical Absorption and Excitons. Electrodynamics of Metals. Acoustic Attenuation in Metals. Theory of Alloys. Correlation Functions and Neutron Diffraction by Crystals. Recoilless Emission. Greena s Functions----Application to Solid State Physics. Appendixes.

2,165 citations

01 Jan 1976
TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

1,588 citations

Book
01 Jan 1963
TL;DR: In this article, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

1,132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new Lagrangian formulation is introduced to make molecular dynamics (MD) calculations on systems under the most general externally applied, conditions of stress, which is well suited to the study of structural transformations in solids under external stress and at finite temperature.
Abstract: A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress‐strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress‐strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

13,937 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this paper, a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals, was developed and implemented.
Abstract: We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals. Exchange and correlation are treated with the local spin density or generalized gradient approximations. The basis functions and the electron density are projected on a real-space grid, in order to calculate the Hartree and exchange-correlation potentials and matrix elements, with a number of operations that scales linearly with the size of the system. We use a modified energy functional, whose minimization produces orthogonal wavefunctions and the same energy and density as the Kohn-Sham energy functional, without the need for an explicit orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the computation time and memory required to minimize the energy to also scale linearly with the size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing structural relaxation and molecular dynamics simulations.

8,723 citations

Journal ArticleDOI
TL;DR: A new method, based on chemical thermodynamics, is developed for automatic detection of macromolecular assemblies in the Protein Data Bank (PDB) entries that are the results of X-ray diffraction experiments, as found, biological units may be recovered at 80-90% success rate, which makesX-ray crystallography an important source of experimental data on macromolescular complexes and protein-protein interactions.

8,377 citations