scispace - formally typeset
Search or ask a question
Author

Charles Nicholson

Bio: Charles Nicholson is an academic researcher from New York University. The author has contributed to research in topics: Extracellular & Tortuosity. The author has an hindex of 68, co-authored 155 publications receiving 18804 citations. Previous affiliations of Charles Nicholson include Marine Biological Laboratory & Ludwig Maximilian University of Munich.


Papers
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: It is reported that sleep has a critical function in ensuring metabolic homeostasis and convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep, suggesting the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
Abstract: The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.

3,303 citations

Journal ArticleDOI
TL;DR: Experimental studies with the real-time iontophoresis method employing the cation tetramethylammonium in normal brain tissue improve the conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment.
Abstract: Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecule...

1,215 citations

Journal ArticleDOI
TL;DR: The clearance systems of the brain as they relate to proteins implicated in AD pathology are described, with the main focus on Aβ.
Abstract: Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.

1,047 citations

Journal ArticleDOI
TL;DR: Data support the feasibility of extrasynaptic or volume transmission in the extracellular space by measuring the volume fraction and tortuosity, a measure of hindrance of cellular obstructions.

880 citations

Journal ArticleDOI
TL;DR: The conclusions confirm that the laws of macroscopic diffusion are closely obeyed in the cerebellum for small ions in the extracellular space, provided that volume fraction and tortuosity are explicitly taken into account.
Abstract: 1. The validity of the macroscopic laws of ion diffusion was critically examined within the microenvironment of the extracellular space in the rat cerebellum using ion-selective micropipettes and ionophoretic point sources. 2. The concepts of volume averaging, volume fraction (alpha) and tortuosity (lambda) were defined and shown to be theoretically appropriate for quantifying diffusion in a complex medium such as the brain. 3. Diffusion studies were made with the cations tetramethylammonium and tetraethylammonium and the anions alpha-naphthalene sulphonate and hexafluoro-arsenate, all of which remained essentially extracellular during the measurements. Diffusion parameters were measured for a period of 50s and over distances of the order of 0.1 mm. 4. Measurements of the diffusion coefficients of the ions in agar gel gave values that were very close to those derivable from the literature, thus confirming the validity of the method. 5. Measurements in the cerebellum did not reveal any systematic influences of ionophoretic current strength, electrode separation, anisotropy, inhomogeneity, charge discrimination or uptake, within the limits tested. 6. The pooled data from measurements with all the ions gave alpha = 0.21 +/- 0.02 (mean +/- S.E. of mean) and lambda = 1.55 +/- 0.05 (mean +/- S.E. of mean). 7. These results show that the extracellular space occupies about 20% of the rat cerebellum and that the diffusion coefficient for small monovalent extracellular ions is reduced by a factor of 2.4 (i.e. lambda 2) without regard to charge sign. The over-all effect of this is to increase the apparent strength of any ionic source in the cerebellum by a factor of lambda 2/alpha, about 12-fold in the present case, and to modify the time course of diffusion. 8. These conclusions confirm that the laws of macroscopic diffusion are closely obeyed in the cerebellum for small ions in the extracellular space, provided that volume fraction and tortuosity are explicitly taken into account. It is likely that these conclusions are generally applicable to other brain regions and other diffusing substances.

767 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The mathematical theory of the method is explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices.
Abstract: Magnetoencephalography (MEG) is a noninvasive technique for investigating neuronal activity in the living human brain. The time resolution of the method is better than 1 ms and the spatial discrimination is, under favorable circumstances, 2-3 mm for sources in the cerebral cortex. In MEG studies, the weak 10 fT-1 pT magnetic fields produced by electric currents flowing in neurons are measured with multichannel SQUID (superconducting quantum interference device) gradiometers. The sites in the cerebral cortex that are activated by a stimulus can be found from the detected magnetic-field distribution, provided that appropriate assumptions about the source render the solution of the inverse problem unique. Many interesting properties of the working human brain can be studied, including spontaneous activity and signal processing following external stimuli. For clinical purposes, determination of the locations of epileptic foci is of interest. The authors begin with a general introduction and a short discussion of the neural basis of MEG. The mathematical theory of the method is then explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices. Finally, several MEG experiments performed in the authors' laboratory are described, covering studies of evoked responses and of spontaneous activity in both healthy and diseased brains. Many MEG studies by other groups are discussed briefly as well.

4,533 citations

Journal ArticleDOI
27 May 2005-Science
TL;DR: Using in vivo two-photon imaging in neocortex, it is found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions.
Abstract: Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.

4,458 citations

Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres.
Abstract: Anisotropic water diffusion in neural fibres such as nerve, white matter in spinal cord, or white matter in brain forms the basis for the utilization of diffusion tensor imaging (DTI) to track fibre pathways. The fact that water diffusion is sensitive to the underlying tissue microstructure provides a unique method of assessing the orientation and integrity of these neural fibres, which may be useful in assessing a number of neurological disorders. The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres. The emphasis of the review will be on model neurological systems both in vitro and in vivo. A systematic discussion of the possible sources of anisotropy and their evaluation will be presented followed by an overview of various studies of restricted diffusion and compartmentation as they relate to anisotropy. Pertinent pathological models, developmental studies and theoretical analyses provide further insight into the basis of anisotropic diffusion and its potential utility in the nervous system.

4,216 citations