scispace - formally typeset
Search or ask a question
Author

Charles P. Plant

Bio: Charles P. Plant is an academic researcher from Tufts University. The author has contributed to research in topics: HSPA14 & Protein G. The author has an hindex of 2, co-authored 2 publications receiving 834 citations.

Papers
More filters
Journal ArticleDOI
20 Oct 1989-Science
TL;DR: A 73-kilodalton protein was found to bind to peptide regions that target intracellular proteins for lysosomal degradation in response to serum withdrawal, and sequences of two internal peptides of the 73-kD protein confirm that it is a member of this family.
Abstract: A 73-kilodalton (kD) intracellular protein was found to bind to peptide regions that target intracellular proteins for lysosomal degradation in response to serum withdrawal. This protein cross-reacted with a monoclonal antibody raised to a member of the 70-kD heat shock protein (hsp70) family, and sequences of two internal peptides of the 73-kD protein confirm that it is a member of this family. In response to serum withdrawal, the intracellular concentration of the 73-kD protein increased severalfold. In the presence of adenosine 5'-triphosphate (ATP) and MgCl2, the 73-kD protein enhanced protein degradation in two different cell-free assays for lysosomal proteolysis.

882 citations

Journal ArticleDOI
01 Dec 1994-Neuron
TL;DR: A model that accounts for the localized flash facilitation and decrement observed in vivo is proposed and is based upon the kinetics of calcium binding and emission of obelin, which shows that facilitation results from two processes: recruitment of calcium entry sites and increased light from previously responding localized sites.

4 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
02 Jan 1992-Nature
TL;DR: Folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.
Abstract: In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

4,181 citations

Journal ArticleDOI
TL;DR: Current knowledge of the morphology, molecular mechanism, and regulation of mammalian autophagy is described, which will aid in the development of new treatments for human diseases in which autphagy is not functioning properly.
Abstract: Significance: Autophagy is a highly conserved eukaryotic cellular recycling process. Through the degradation of cytoplasmic organelles, proteins, and macromolecules, and the recycling of the breakdown products, autophagy plays important roles in cell survival and maintenance. Accordingly, dysfunction of this process contributes to the pathologies of many human diseases. Recent Advances: Extensive research is currently being done to better understand the process of autophagy. In this review, we describe current knowledge of the morphology, molecular mechanism, and regulation of mammalian autophagy. Critical Issues: At the mechanistic and regulatory levels, there are still many unanswered questions and points of confusion that have yet to be resolved. Future Directions: Through further research, a more complete and accurate picture of the molecular mechanism and regulation of autophagy will not only strengthen our understanding of this significant cellular process, but will aid in the development o...

1,436 citations

Journal ArticleDOI
TL;DR: The enhanced synthesis of a few proteins immediately after subjecting cells to a stress such as heat shock was first reported for drosophila cells in 1974 and the universality of the response from bacteria to human was recognized shortly thereafter.

1,341 citations

Journal ArticleDOI
TL;DR: The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lyssome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysOSomal function in human disease.
Abstract: For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.

1,311 citations