scispace - formally typeset
C

Charles R. Farrar

Researcher at Los Alamos National Laboratory

Publications -  361
Citations -  28706

Charles R. Farrar is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Structural health monitoring & Sensor node. The author has an hindex of 70, co-authored 357 publications receiving 26338 citations. Previous affiliations of Charles R. Farrar include Analysis Group.

Papers
More filters
ReportDOI

Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review

TL;DR: A review of the technical literature concerning the detection, location, and characterization of structural damage via techniques that examine changes in measured structural vibration response is presented in this article, where the authors categorize the methods according to required measured data and analysis technique.
Journal ArticleDOI

A summary review of vibration-based damage identification methods

TL;DR: In this paper, the authors provide an overview of methods to detect, locate, and characterize damage in structural and mechanical systems by examining changes in measured vibration response, including frequency, mode shape, and modal damping.
Journal ArticleDOI

An introduction to structural health monitoring

TL;DR: Technical challenges that must be addressed if SHM is to gain wider application are discussed in a general manner and the historical overview and summarizing the SPR paradigm are provided.

A review of structural health monitoring literature 1996-2001

TL;DR: An updated review covering the years 1996 2001 will summarize the outcome of an updated review of the structural health monitoring literature, finding that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition.
Journal ArticleDOI

Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward

TL;DR: In this article, Niezrecki et al. summarized the hardware and software issues of impedance-based structural health modi- toring based on piezoelectric materials.