scispace - formally typeset
Search or ask a question
Author

Charles R. Farrar

Other affiliations: Analysis Group
Bio: Charles R. Farrar is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Structural health monitoring & Sensor node. The author has an hindex of 70, co-authored 357 publications receiving 26338 citations. Previous affiliations of Charles R. Farrar include Analysis Group.


Papers
More filters
01 Jan 2002
TL;DR: Although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition, and the discrimination procedures employed are often lacking the appropriate rigor necessary for this technology to evolve beyond demonstration problems carried out in laboratory setting.
Abstract: Staff members at Los Alamos National Laboratory (LANL) produced a summary of the structural health monitoring literature in 1995. This presentation will summarize the outcome of an updated review covering the years 1996 - 2001. The updated review follows the LANL statistical pattern recognition paradigm for SHM, which addresses four topics: (1) Operational Evaluation; (2) Data Acquisition and Cleansing; (3) Feature Extraction; and (4) Statistical Modeling for Feature Discrimination. The literature has been reviewed based on how a particular study addresses these four topics. A significant observation from this review is that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition. As such, the discrimination procedures employed are often lacking the appropriate rigor necessary for this technology to evolve beyond demonstration problems carried out in laboratory setting.

440 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared five methods for damage assessment using experimental modal data from an undamaged and damaged bridge and concluded that all methods can accurately locate the damage for the most severe damage case investigated.
Abstract: Over the past 30 years detecting damage in a structure from changes in global dynamic parameters has received considerable attention from the civil, aerospace and mechanical engineering communities. The basis for this approach to damage detection is that changes in the structure's physical properties (i.e., boundary conditions, stiffness, mass and/or damping) will, in turn, alter the dynamic characteristics (i.e., resonant frequencies, modal damping and mode shapes) of the structure. Changes in properties such as the flexibility or stiffness matrices derived from measured modal properties and changes in mode shape curvature have shown promise for locating structural damage. However, to date there has not been a study reported in the technical literature that directly compares these various methods. The experimental results reported in this paper and the results of a numerical study reported in an accompanying paper attempt to fill this void in the study of damage detection methods. Five methods for damage assessment that have been reported in the technical literature are summarized and compared using experimental modal data from an undamaged and damaged bridge. For the most severe damage case investigated, all methods can accurately locate the damage. The methods show varying levels of success when applied to less severe damage cases. This paper concludes by summarizing some areas of the damage identification process that require further study.

422 citations

Journal ArticleDOI
TL;DR: This paper concludes the theme issue on structural health monitoring (SHM) by discussing the concept of damage prognosis (DP), which attempts to forecast system performance by assessing the current damage state, estimating the future loading environments for that system, and predicting through simulation and past experience the remaining useful life of the system.
Abstract: This paper concludes the theme issue on structural health monitoring (SHM) by discussing the concept of damage prognosis (DP). DP attempts to forecast system performance by assessing the current damage state of the system (i.e. SHM), estimating the future loading environments for that system, and predicting through simulation and past experience the remaining useful life of the system. The successful development of a DP capability will require the further development and integration of many technology areas including both measurement/processing/telemetry hardware and a variety of deterministic and probabilistic predictive modelling capabilities, as well as the ability to quantify the uncertainty in these predictions. The multidisciplinary and challenging nature of the DP problem, its current embryonic state of development, and its tremendous potential for life-safety and economic benefits qualify DP as a ‘grand challenge’ problem for engineers in the twenty-first century.

394 citations

Journal ArticleDOI
TL;DR: All members of the Los Alamos Structural Health Monitoring Team contributed to this study reported herein and the authors thank them for their contributions.
Abstract: All members of the Los Alamos Structural Health Monitoring Team contributed to this study reported herein. The team members include George Papcum and Michael L. Fugate from the CIC3 Group, and Scott Doebling from the Engineering Analysis Group. Funding for this investigation came primarily through Los Alamos National Laboratory Director’s Funded Postdoctoral Fellows Program. The authors also thank Gregg Johnson and Mike Todd of NRL for providing the experimental data and allowing the publication of the test results.

393 citations

01 Jan 1997
TL;DR: In this article, the problem of using measured modal parameters to detect and locate damage in plate-like structures is investigated, and a method based on the changes in the strain energy of the structure is discussed.
Abstract: In this paper the problem of using measured modal parameters to detect and locate damage in plate-like structures is investigated. Many methods exist for locating damage in a structure given the modal properties before and after damage. Unfortunately, many of these methods require a correlated finite element model or mass normalized mode shapes. If the modal properties are obtained using ambient excitation then the mode shapes will not be mass normalized. In this paper a method based on the changes in the strain energy of the structure will be discussed. This method has been successfully applied to beam-like structures, that is, structures characterized by one-dimensional curvature. In this paper the method will be generalized to plate-like structures that are characterized by two-dimensional curvature. This method only requires the mode shapes of the structure before and after damage. To evaluate the effectiveness of the method it will be applied to simulated data.

390 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

9,627 citations

Journal ArticleDOI
TL;DR: This paper attempts to summarise and review the recent research and developments in diagnostics and prognostics of mechanical systems implementing CBM with emphasis on models, algorithms and technologies for data processing and maintenance decision-making.

3,848 citations

ReportDOI
01 May 1996
TL;DR: A review of the technical literature concerning the detection, location, and characterization of structural damage via techniques that examine changes in measured structural vibration response is presented in this article, where the authors categorize the methods according to required measured data and analysis technique.
Abstract: This report contains a review of the technical literature concerning the detection, location, and characterization of structural damage via techniques that examine changes in measured structural vibration response. The report first categorizes the methods according to required measured data and analysis technique. The analysis categories include changes in modal frequencies, changes in measured mode shapes (and their derivatives), and changes in measured flexibility coefficients. Methods that use property (stiffness, mass, damping) matrix updating, detection of nonlinear response, and damage detection via neural networks are also summarized. The applications of the various methods to different types of engineering problems are categorized by type of structure and are summarized. The types of structures include beams, trusses, plates, shells, bridges, offshore platforms, other large civil structures, aerospace structures, and composite structures. The report describes the development of the damage-identification methods and applications and summarizes the current state-of-the-art of the technology. The critical issues for future research in the area of damage identification are also discussed.

2,916 citations