scispace - formally typeset
Search or ask a question
Author

Charles Rosenblum

Bio: Charles Rosenblum is an academic researcher from Merck & Co.. The author has contributed to research in topics: Leptin & Leptin receptor. The author has an hindex of 24, co-authored 63 publications receiving 4771 citations. Previous affiliations of Charles Rosenblum include Pennington Biomedical Research Center.


Papers
More filters
Journal ArticleDOI
16 Aug 1996-Science
TL;DR: A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs.
Abstract: Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.

2,064 citations

Journal ArticleDOI
TL;DR: Mc3r and Mc4r serve non-redundant roles in the regulation of energy homeostasis by studying Mc3r-deficient mice and comparing their functions in mice deficient for both genes.
Abstract: Genetic and pharmacological studies have defined a role for the melanocortin-4 receptor (Mc4r) in the regulation of energy homeostasis. The physiological function of Mc3r, a melanocortin receptor expressed at high levels in the hypothalamus, has remained unknown. We evaluated the potential role of Mc3r in energy homeostasis by studying Mc3r-deficient (Mc3r(-/-)) mice and compared the functions of Mc3r and Mc4r in mice deficient for both genes. The 4-6-month Mc3r-/- mice have increased fat mass, reduced lean mass and higher feed efficiency than wild-type littermates, despite being hypophagic and maintaining normal metabolic rates. (Feed efficiency is the ratio of weight gain to food intake.) Consistent with increased fat mass, Mc3r(-/-) mice are hyperleptinaemic and male Mc3r(-/-) mice develop mild hyperinsulinaemia. Mc3r(-/-) mice did not have significantly altered corticosterone or total thyroxine (T4) levels. Mice lacking both Mc3r and Mc4r become significantly heavier than Mc4r(-/-) mice. We conclude that Mc3r and Mc4r serve non-redundant roles in the regulation of energy homeostasis.

873 citations

Journal ArticleDOI
TL;DR: It is shown that the melanocortin 4 receptor, implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior, and evidence is provided that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis.
Abstract: By using a combination of genetic, pharmacological, and anatomical approaches, we show that the melanocortin 4 receptor (MC4R), implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior. Evidence supporting this notion is based on several findings: (i) a highly selective non-peptide MC4R agonist augments erectile activity initiated by electrical stimulation of the cavernous nerve in wild-type but not Mc4r-null mice; (ii) copulatory behavior is enhanced by administration of a selective MC4R agonist and is diminished in mice lacking Mc4r; (iii) reverse transcription (RT)-PCR and non-PCR based methods demonstrate MC4R expression in rat and human penis, and rat spinal cord, hypothalamus, brainstem, pelvic ganglion (major autonomic relay center to the penis), but not in rat primary corpus smooth muscle cavernosum cells; and (iv) in situ hybridization of glans tissue from the human and rat penis reveal MC4R expression in nerve fibers and mechanoreceptors in the glans of the penis. Collectively, these data implicate the MC4R in the modulation of penile erectile function and provide evidence that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis. Our results provide a basis for the existence of MC4R-controlled neuronal pathways that control sexual function.

292 citations

Journal ArticleDOI
TL;DR: It is reported here that CNTF and leptin activate a similar pattern of STAT factors in neuronal cells, and that mRNAs for CNTF receptor subunits, similarly to the mRNA of leptin receptor, are localized in mouse hypothalamic nuclei involved in the regulation of energy balance.
Abstract: Receptor subunits for the neurocytokine ciliary neurotrophic factor (CNTF) share sequence similarity with the receptor for leptin, an adipocyte-derived cytokine involved in body weight homeostasis. We report here that CNTF and leptin activate a similar pattern of STAT factors in neuronal cells, and that mRNAs for CNTF receptor subunits, similarly to the mRNA of leptin receptor, are localized in mouse hypothalamic nuclei involved in the regulation of energy balance. Systemic administration of CNTF or leptin led to rapid induction of the tis-11 primary response gene in the arcuate nucleus, suggesting that both cytokines can signal to hypothalamic satiety centers. Consistent with this idea, CNTF treatment of ob/ob mice, which lack functional leptin, was found to reduce the adiposity, hyperphagia, and hyperinsulinemia associated with leptin deficiency. Unlike leptin, CNTF also reduced obesity-related phenotypes in db/db mice, which lack functional leptin receptor, and in mice with diet-induced obesity, which are partially resistant to the actions of leptin. The identification of a cytokine-mediated anti-obesity mechanism that acts independently of the leptin system may help to develop strategies for the treatment of obesity associated with leptin resistance.

218 citations

Journal ArticleDOI
TL;DR: The results suggest that pharmacological intervention with small molecules that disrupt apoE4 domain interaction is a potential therapeutic approach for apOE4-carrying AD subjects.

161 citations


Cited by
More filters
Journal ArticleDOI
09 Dec 1999-Nature
TL;DR: The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelIn, a peptide specifically releases GH both in vivo and in vitro.
Abstract: Small synthetic molecules called growth-hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through GHS-R, a G-protein-coupled receptor for which the ligand is unknown. Recent cloning of GHS-R strongly suggests that an endogenous ligand for the receptor does exist and that there is a mechanism for regulating GH release that is distinct from its regulation by hypothalamic growth-hormone-releasing hormone (GHRH). We now report the purification and identification in rat stomach of an endogenous ligand specific for GHS-R. The purified ligand is a peptide of 28 amino acids, in which the serine 3 residue is n-octanoylated. The acylated peptide specifically releases GH both in vivo and in vitro, and O-n-octanoylation at serine 3 is essential for the activity. We designate the GH-releasing peptide 'ghrelin' (ghre is the Proto-Indo-European root of the word 'grow'). Human ghrelin is homologous to rat ghrelin apart from two amino acids. The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelin.

8,073 citations

Journal ArticleDOI
19 Oct 2000-Nature
TL;DR: It is proposed that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary, suggesting an involvement in regulation of energy balance.
Abstract: The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary

3,894 citations

Journal ArticleDOI
11 Jan 2001-Nature
TL;DR: It is shown that ghrelin is involved in the hypothalamic regulation of energy homeostasis and probably has a function in growth regulation by stimulating feeding and release of growth hormone.
Abstract: Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary. Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain, which is indicative of central-and as yet undefined-physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation, was found in regions of primary importance in the regulation of feeding, including neuropeptide Y6 (NPY) neurons and agouti-related protein (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.

3,400 citations

Journal ArticleDOI
TL;DR: The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by gh Relin derived from the stomach, which plays important roles for maintaining GH release and energy homeostasis in vertebrates.
Abstract: Small synthetic molecules called growth hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through the GHS-R, a G protein-coupled receptor whose ligand has only been discovered recently. Using a reverse pharmacology paradigm with a stable cell line expressing GHS-R, we purified an endogenous ligand for GHS-R from rat stomach and named it "ghrelin," after a word root ("ghre") in Proto-Indo-European languages meaning "grow." Ghrelin is a peptide hormone in which the third amino acid, usually a serine but in some species a threonine, is modified by a fatty acid; this modification is essential for ghrelin's activity. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. In addition, ghrelin stimulates appetite by acting on the hypothalamic arcuate nucleus, a region known to control food intake. Ghrelin is orexigenic; it is secreted from the stomach and circulates in the bloodstream under fasting conditions, indicating that it transmits a hunger signal from the periphery to the central nervous system. Taking into account all these activities, ghrelin plays important roles for maintaining GH release and energy homeostasis in vertebrates.

2,740 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: The last 5 years of the millennium have witnessed a dramatic increase in understanding of the biology of regulated energy balance and body weight, and insights from the sequencing of the human genome and the coming advances in proteomics are likely to fuel the next wave of progress.

2,332 citations