scispace - formally typeset
Search or ask a question
Author

Charles V. Shank

Bio: Charles V. Shank is an academic researcher from Bell Labs. The author has contributed to research in topics: Femtosecond & Dye laser. The author has an hindex of 33, co-authored 68 publications receiving 7467 citations. Previous affiliations of Charles V. Shank include Lawrence Berkeley National Laboratory & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analysis of laser action in a periodic structure is presented, where the resonant frequencies and threshold criteria for the modes of oscillation have been determined for both index and gain periodicities.
Abstract: An analysis of laser action in a periodic structure is presented. A model of two counter‐running waves coupled by backward Bragg scattering is used. The resonant frequencies and threshold criteria for the modes of oscillation have been determined for both index and gain periodicities. Analytical approximations are given for both the high‐ and low‐gain cases, and computational results for the intermediate regimes.

2,090 citations

Journal ArticleDOI
TL;DR: In this article, a novel passive mode-locking technique was proposed in which two synchronized counterpropagating pulses interact in a thin, saturable absorber to produce a short pulse.
Abstract: We report a novel passive mode‐locking technique in which two synchronized counterpropagating pulses interact in a thin, saturable absorber to produce a short pulse. Continuous stable trains of pulses shorter than 0.1 psec are obtained using a ring laser configuration.

794 citations

Journal ArticleDOI
06 May 1988-Science
TL;DR: In this article, a 60-femtosecond pump pulse at 618 nanometers was used to study the primary photoprocesses in the light-driven transmembrane proton pump bacteriorhodopsin.
Abstract: Femtosecond optical measurement techniques have been used to study the primary photoprocesses in the light-driven transmembrane proton pump bacteriorhodopsin. Light-adapted bacteriorhodopsin was excited with a 60-femtosecond pump pulse at 618 nanometers, and the transient absorption spectra from 560 to 710 nanometers were recorded from -50 to 1000 femtoseconds by means of 6-femtosecond probe pulses. By 60 femtoseconds, a broad transient hole appeared in the absorption spectrum whose amplitude remained constant for about 200 femtoseconds. Stimulated emission in the 660- to 710-nanometer region and excited-state absorption in the 560- to 580-nanometer region appeared promptly and then shifted and decayed from 0 to approximately 150 femtoseconds. These spectral features provide a direct observation of the 13-trans to 13-cis torsional isomerization of the retinal chromophore on the excited-state potential surface. Absorption due to the primary ground-state photoproduct J appears with a time constant of approximately 500 femtoseconds.

497 citations

Journal ArticleDOI
TL;DR: In this article, a method to compensate the astigmatic distortions introduced by both the internal mirror and the cell is described, which allows the formation of a tight intracavity focus as required in applications such as CW dye lasers.
Abstract: An analysis is given of folded 3-mirror laser resonators with an internal cell set at Brewster's angle. A method is described to compensate the astigmatic distortions introduced by both the internal mirror and the cell. This compensation is achieved for a specific relation between cell thickness and folding angle. It allows the formation of a tight intracavity focus as required in applications such as CW dye lasers. A discussion is given of the mode characteristics of compensated cavities and of the limitation on beam concentration set by the thickness of the Brewster cell.

430 citations

Journal ArticleDOI
TL;DR: In this article, the dynamics of the structural changes that take place on a silicon surface following excitation with an intense optical pulse are observed with 90-fs time resolution, and the threefold rotational symmetry of the silicon surface becomes rotationally isotropic within a picosecond after excitation consistent with a transition from the crystalline to the liquid molten state.
Abstract: The dynamics of the structural changes that take place on a silicon surface following excitation with an intense optical pulse are observed with 90-fs time resolution. The threefold rotational symmetry of the silicon $〈111〉$ surface becomes rotationally isotropic within a picosecond after excitation consistent with a transition from the crystalline to the liquid molten state.

283 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.
Abstract: It has been recognized for some time that the spontaneous emission by atoms is not necessarily a fixed and immutable property of the coupling between matter and space, but that it can be controlled by modification of the properties of the radiation field. This is equally true in the solid state, where spontaneous emission plays a fundamental role in limiting the performance of semiconductor lasers, heterojunction bipolar transistors, and solar cells. If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.

12,787 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: In this paper, the electron transfer reactions between ions and molecules in solution have been the subject of considerable experimental study during the past three decades, including charge transfer, photoelectric emission spectra, chemiluminescent electron transfer, and electron transfer through frozen media.

7,155 citations

Journal ArticleDOI
TL;DR: In this paper, the present status and new opportunities for research in this area of materials physical chemistry are reviewed, as well as a review of the present state and opportunities in this field.
Abstract: Semiconductor nanocrystals exhibit a wide range of size-dependent properties. Variations in fundamental characteristics ranging from phase transitions to electrical conductivity can be induced by controlling the size of the crystals. The present status and new opportunities for research in this area of materials physical chemistry are reviewed.

3,493 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations