scispace - formally typeset
Search or ask a question
Author

Charles W. Bauschlicher

Bio: Charles W. Bauschlicher is an academic researcher from Ames Research Center. The author has contributed to research in topics: Chemical bond & Density functional theory. The author has an hindex of 71, co-authored 480 publications receiving 19951 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented 6-9 mum spectra of a sample of reflection nebulae, HII regions, YSOs, evolved stars and galaxies that show strong unidentified infrared bands, obtained with the SWS spectrograph on board ISO.
Abstract: IR spectroscopy provides a valuable tool for the characterisation and identification of interstellar molecular species. Here, we present 6-9 mum spectra of a sample of reflection nebulae, HII regions, YSOs, evolved stars and galaxies that show strong unidentified infrared bands, obtained with the SWS spectrograph on board ISO. The IR emission features in this wavelength region show pronounced variations. 1) The 6.2 mum feature shifts from 6.22 to 6.3 mum and clearly shows profile variations. 2) The 7.7 mum complex is comprised of at least two subpeaks peaking at 7.6 and one longwards of 7.7 mum. In some cases the main peak can apparently shift up to 8 mum. Two sources do not exhibit a 7.7 mum complex but instead show a broad emission feature at 8.22 mum. 3) The 8.6 mum feature has a symmetric profile in all sources and some sources exhibit this band at slightly longer wavelengths. For the 6.2, 7.7 and 8.6 mum features, the sources have been classified independently based on their profile and peak position. The classes derived for these features are directly linked with each other. Sources with a 6.2 mum feature peaking at similar to6.22 mum exhibit a 7.7 mum complex dominated by the 7.6 mum component. In contrast, sources with a 6.2 mum profile peaking longwards of 6.24 mum show a 7.7 mum complex with a dominant peak longwards of 7.7 mum and a 8.6 mum feature shifted toward the red. Furthermore, the observed 6-9 mum spectrum depends on the type of object. All ISM-like sources and a few PNe and Post-AGB stars belong to the first group while isolated Herbig AeBe stars, a few Post-AGB stars and most PNe belong to the second group. We summarise existing laboratory data and theoretical quantum chemical calculations of the modes emitting in this wavelength region of PAH molecules. We discuss the variations in peak position and profile in view of the exact nature of the carrier. We attribute the observed 6.2 mum profile and peak position to the combined effect of a PAH family and anharmonicity with pure PAHs representing the 6.3 mum component and substituted/complexed PAHs representing the 6.2 mum component. The 7.6 mum component is well reproduced by both pure and substituted/complexed PAHs but the 7.8 mum component remains an enigma. In addition, the exact identification of the 8.22 mum feature remains unknown. The observed variations in the characteristics of the IR emission bands are linked to the local physical conditions. Possible formation and evolution processes that may influence the interstellar PAH class are highlighted.

543 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented 6-9 um spectra of a sample of RNe, HII regions, YSOs, evolved stars and galaxies that show strong infrared bands, obtained with the ISO-SWS.
Abstract: Here, we present 6-9 um spectra of a sample of RNe, HII regions, YSOs, evolved stars and galaxies that show strong unidentified infrared bands, obtained with the ISO-SWS. The IR emission features show pronounced variations. 1) The 6.2 um feature shifts and clearly shows profile variations. 2) The 7.7 um complex is comprised of at least two subpeaks peaking at 7.6 and one longwards of 7.7 um. In some cases the main peak can apparently shift up to 8 um. Two sources do not exhibit a 7.7 um complex but instead show a broad emission feature at 8.22 um. 3) The 8.6 um feature has a symmetric profile in all sources and some sources exhibit this band at slightly longer wavelengths. For the 6.2, 7.7 and 8.6 um features, the sources have been classified independently based on their profile and peak position. The classes derived for these features are directly linked with each other. Furthermore, the observed 6--9 um spectrum depends on the type of object. We attribute the observed 6.2 um profile and peak position to the combined effect of a PAH family and anharmonicity with pure PAHs representing the 6.3 um component and substituted/complexed PAHs representing the 6.2 um component. The 7.6 um component is well reproduced by both pure and substituted/complexed PAHs but the 7.8 um component remains an enigma. In addition, the exact identification of the 8.22 um feature remains unknown. The observed variations in the characteristics of the IR emission bands are linked to the local physical conditions. Possible formation and evolution processes that may influence the interstellar PAH class are highlighted.

526 citations

Journal ArticleDOI
TL;DR: In this paper, a constrained space orbital variation (CSOV) with the electrons of the metal member of the complex in the field of frozen ligand is performed, and the electrons are then frozen in the relaxed distribution given by the CSOV SCF wave function and the ligand electrons are allowed to relax.
Abstract: The nature of the bonding of CO and NH3 ligands to Al is analyzed, and the intra-unit charge polarization and inter-unit donation for the interaction of ligands with metals are studied. The consequences of metal-to-ligand and ligand-to-metal charge transfer are separately considered by performing a constrained space orbital variation (CSOV) with the electrons of the metal member of the complex in the field of frozen ligand. The electrons of the metal atoms are then frozen in the relaxed distribution given by the CSOV SCF wave function and the ligand electrons are allowed to relax. Quantitative measures of the importance of inter-unit charge transfers and intra-unit polarization are obtained using results of SCF studies of Al4CO and Al4NH3 clusters chosen to simulate the adsorption of the ligands at an on-top side of the Al(111) surface. The electrostatic attraction of the effective dipole moments of the metal and ligand units makes an important contribution to the bond.

486 citations

Journal ArticleDOI
TL;DR: The laser-ablation method produces mostly neutral atoms with a few percent cations and electrons for capture to make anions; in contrast, thermal evaporation gives only neutral species, so the very recent neon matrix investigations in the laboratory provide carbonyl cation and anions for comparison to neutrals on a level playing field.
Abstract: Figure 18 presents the C-O stretching vibrational frequencies of the first-row transition-metal monocarbonyl cations, neutrals, and anions in solid neon; similar diagrams have been reported for neutral MCO species in solid argon, but three of the early assignments have been changed by recent work and one new assignment added. The laser-ablation method produces mostly neutral atoms with a few percent cations and electrons for capture to make anions; in contrast, thermal evaporation gives only neutral species. Hence, the very recent neon matrix investigations in our laboratory provide carbonyl cations and anions for comparison to neutrals on a level playing field. Several trends are very interesting. First, for all metals, the C-O stretching frequencies follow the order cations > neutrals > anions with large diagnostic 100-200 cm-1 separations, which is consistent with the magnitude of the metal d to CO pi * donation. Second, for a given charge, there is a general increase in C-O stretching vibrational frequencies with increasing metal atomic number, which demonstrates the expected decrease in the metal to CO pi * donation with increasing metal ionization potential. Some of the structure in this plot arises from the extra stability of the filled and half-filled d shell and from the electron pairing that occurs at the middle of the TM row; the plot resembles the "double-humped" graph found for the variation in properties across a row of transition metals. For the anions, the variation with metal atom is the smallest since all of the metals can easily donate charge to the CO ligand. Third, for the early transition-metal Ti, V, and Cr families, the C-O stretching frequencies decrease when going down the family, but the reverse relationship is observed for the late transition-metal Fe, Co, and Ni families. In most of the present discussion, we have referred to neon matrix frequencies; however, the argon matrix frequencies are complementary, and useful information can be obtained from comparison of the two matrix hosts. In most cases, the neon-to-argon red shift for neutral carbonyls is from 11 to 26 cm-1, but a few (CrCO) lie outside of this range. In the case of FeCO and Fe(CO)2, it appears that neon and argon trap different low-lying electronic states. In general, the carbonyl neutrals and anions have similar shifts but carbonyl cations have larger matrix shifts. For example, the FeCO+ fundamental is at 2123.0 cm-1 in neon and 2081.5 cm-1 in argon, a 42.5 cm-1 shift, which is larger than those found for FeCO- (11.7 cm-1) and FeCO (11.7 cm-1). It is unusual for different low-lying electronic states to be trapped in different matrices, but CUO provides another example. The linear singlet state (1047.3, 872.2 cm-1) is trapped in solid neon, and a calculated 1.2 kcal/mol higher triplet state is trapped in solid argon (852.5, 804.3 cm-1) and stabilized by a specific interaction with argon. The bonding trends are well described by theoretical calculations of vibrational frequencies. Table 5 compares the scale factors (observed neon matrix/calculated) for the C-O stretching modes of the monocarbonyl cations, neutrals, and anions of the first-row transition metals observed in a neon matrix using the B3LYP and BP86 density functionals. Most of the calculated carbonyl harmonic stretching frequencies are within 1% of the experimental fundamentals at the BP86 level of theory, while calculations using the B3LYP functional give frequencies that are 3-4% higher as expected for these density functionals and calculations on saturated TM-carbonyls. For second- and third-row carbonyls using the BP86 density functional and the LANL effective core potential in conjunction with the DZ basis set, the agreement between theory and experiment is just as good. For example, the 16 M(CO)1-4 neutral and anion and 2 MCO+ cation (M = Ru, Os) carbonyl frequencies are fit within 1.5%. The 16 species (M = Rh, Ir) are fit within 1%, but the Rh(CO)1-4+ calculations are 2-3% too low and Ir(CO)1-4+ computations are 1-2% too low. In addition to predicting the vibrational frequencies, DFT can be used to calculate different isotopic frequencies, and isotopic frequency ratios can be computed as a measure of the normal vibrational mode in the molecule for an additional diagnostic. For diatomic CO, the 12CO/13CO ratio 1.0225 and C16O/C18O ratio 1.0244 characterize a pure C-O stretching mode. In a series of molecules such as RhCO+, RhCO, and RhCO-, where the metal-CO bonding varies, the Rh-C, C-O vibrational interaction is different and the unique isotopic ratios for the carbonyl vibration are characteristic of that particular molecule. Table 6 summarizes the isotopic ratios observed and calculated for the RhCO+,0,- species. Note that RhCO+ exhibits slightly more carbon-13 and less oxygen-18 involvement in the C-O vibration than CO itself and that this trend increases to RhCO and to RhCO- as the Rh-C bond becomes shorter and stronger. Note also how closely the calculated and observed ratios both follow this trend. In a molecule with two C-O stretching modes, for example, bent Ni(CO)2 exhibits a strong b2 mode at 1978.9 cm-1 and a weak a1 mode at 2089.7 cm-1 in solid neon, and these two modes involve different C and O participations. The symmetric mode shows substantially more C (1.0242) and less O (1.0217) participation than does the antisymmetric mode with C (1.0228) and O (1.0238) involvement, based on the given isotopic frequency ratios, which are nicely matched by DFT calculations (a1 1.0244, 1.0224 and b2 1.0232, 1.0241, respectively). These investigations of vibrational frequencies in unsaturated transition-metal carbonyl cations, neutrals, and anions clearly demonstrate the value of a close working relationship between experiment and theory to identify and characterize new molecular species.

398 citations

Journal ArticleDOI
TL;DR: In this article, the errors in the computed geometries, zero-point energies, and atomization energies of molecules containing only first and second row atoms are compared for several levels of theory, including Hartree-Fock, second-order Moller-Plesset perturbation theory (MP2), and density functional theory (DFT) using five different functionals, including two hybrid functionals.

375 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of correlation effects in the oxygen atom was conducted, and it was shown that primitive basis sets of primitive Gaussian functions effectively and efficiently describe correlation effects.
Abstract: In the past, basis sets for use in correlated molecular calculations have largely been taken from single configuration calculations. Recently, Almlof, Taylor, and co‐workers have found that basis sets of natural orbitals derived from correlated atomic calculations (ANOs) provide an excellent description of molecular correlation effects. We report here a careful study of correlation effects in the oxygen atom, establishing that compact sets of primitive Gaussian functions effectively and efficiently describe correlation effects i f the exponents of the functions are optimized in atomic correlated calculations, although the primitive (s p) functions for describing correlation effects can be taken from atomic Hartree–Fock calculations i f the appropriate primitive set is used. Test calculations on oxygen‐containing molecules indicate that these primitive basis sets describe molecular correlation effects as well as the ANO sets of Almlof and Taylor. Guided by the calculations on oxygen, basis sets for use in correlated atomic and molecular calculations were developed for all of the first row atoms from boron through neon and for hydrogen. As in the oxygen atom calculations, it was found that the incremental energy lowerings due to the addition of correlating functions fall into distinct groups. This leads to the concept of c o r r e l a t i o n c o n s i s t e n t b a s i s s e t s, i.e., sets which include all functions in a given group as well as all functions in any higher groups. Correlation consistent sets are given for all of the atoms considered. The most accurate sets determined in this way, [5s4p3d2f1g], consistently yield 99% of the correlation energy obtained with the corresponding ANO sets, even though the latter contains 50% more primitive functions and twice as many primitive polarization functions. It is estimated that this set yields 94%–97% of the total (HF+1+2) correlation energy for the atoms neon through boron.

26,705 citations

Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so-called PBE generalized gradient functional with a predefined amount of exact exchange is presented.
Abstract: We present an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so called PBE generalized gradient functional with a predefined amount of exact exchange. The results obtained for structural, thermodynamic, kinetic and spectroscopic (magnetic, infrared and electronic) properties are satisfactory and not far from those delivered by the most reliable functionals including heavy parameterization. The way in which the functional is derived and the lack of empirical parameters fitted to specific properties make the PBE0 model a widely applicable method for both quantum chemistry and condensed matter physics.

13,411 citations

Journal ArticleDOI
TL;DR: In this paper, a reliable procedure for calculating the electron affinity of an atom and present results for hydrogen, boron, carbon, oxygen, and fluorine (hydrogen is included for completeness).
Abstract: The calculation of accurate electron affinities (EAs) of atomic or molecular species is one of the most challenging tasks in quantum chemistry. We describe a reliable procedure for calculating the electron affinity of an atom and present results for hydrogen, boron, carbon, oxygen, and fluorine (hydrogen is included for completeness). This procedure involves the use of the recently proposed correlation‐consistent basis sets augmented with functions to describe the more diffuse character of the atomic anion coupled with a straightforward, uniform expansion of the reference space for multireference singles and doubles configuration‐interaction (MRSD‐CI) calculations. Comparison with previous results and with corresponding full CI calculations are given. The most accurate EAs obtained from the MRSD‐CI calculations are (with experimental values in parentheses) hydrogen 0.740 eV (0.754), boron 0.258 (0.277), carbon 1.245 (1.263), oxygen 1.384 (1.461), and fluorine 3.337 (3.401). The EAs obtained from the MR‐SD...

12,969 citations