scispace - formally typeset
Search or ask a question
Author

Charlie G. Buffie

Bio: Charlie G. Buffie is an academic researcher from Memorial Sloan Kettering Cancer Center. The author has contributed to research in topics: Colonisation resistance & Clostridium difficile. The author has an hindex of 8, co-authored 8 publications receiving 3505 citations.

Papers
More filters
Journal ArticleDOI
08 Jan 2015-Nature
TL;DR: It is determined that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile Acid dependent fashion.
Abstract: The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

1,413 citations

Journal ArticleDOI
TL;DR: How immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota is discussed and recent advances characterizing the ability of different Commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts are reviewed.
Abstract: Colonization resistance — protection from exogenous pathogens by commensal bacteria — can be mediated by direct antagonism and by indirect effects on the host immune response. This Review outlines our current knowledge of immune-mediated colonization resistance against clinically relevant, antibiotic-resistant intestinal pathogens and how insights into commensal bacterial species and their mechanisms might be therapeutically used to restore resistance.

1,110 citations

Journal ArticleDOI
TL;DR: A novel method to infer microbial community ecology directly from time-resolved metagenomics is presented, extending generalized Lotka–Volterra dynamics to account for external perturbations and suggests a subnetwork of bacterial groups implicated in protection against C. difficile.
Abstract: The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

521 citations

Journal ArticleDOI
TL;DR: It is shown that a single dose of clindamycin markedly reduces the diversity of the intestinal microbiota for at least 28 days, with an enduring loss of ca.
Abstract: Antibiotic-induced changes in the intestinal microbiota predispose mammalian hosts to infection with antibiotic-resistant pathogens. Clostridium difficile is a Gram-positive intestinal pathogen that causes colitis and diarrhea in patients following antibiotic treatment. Clindamycin predisposes patients to C. difficile colitis. Here, we have used Roche-454 16S rRNA gene pyrosequencing to longitudinally characterize the intestinal microbiota of mice following clindamycin treatment in the presence or absence of C. difficile infection. We show that a single dose of clindamycin markedly reduces the diversity of the intestinal microbiota for at least 28 days, with an enduring loss of ca. 90% of normal microbial taxa from the cecum. Loss of microbial complexity results in dramatic sequential expansion and contraction of a subset of bacterial taxa that are minor contributors to the microbial consortium prior to antibiotic treatment. Inoculation of clindamycin-treated mice with C. difficile (VPI 10463) spores results in rapid development of diarrhea and colitis, with a 4- to 5-day period of profound weight loss and an associated 40 to 50% mortality rate. Recovering mice resolve diarrhea and regain weight but remain highly infected with toxin-producing vegetative C. difficile bacteria and, in comparison to the acute stage of infection, have persistent, albeit ameliorated cecal and colonic inflammation. The microbiota of “recovered” mice remains highly restricted, and mice remain susceptible to C. difficile infection at least 10 days following clindamycin, suggesting that resolution of diarrhea and weight gain may result from the activation of mucosal immune defenses.

488 citations

Journal ArticleDOI
24 Feb 2012-Immunity
TL;DR: CD103(+)CD11b(+) LPDCs, in addition to promoting long-term tolerance to ingested antigens, also rapidly produce IL-23 in response to detection of flagellin in the lamina propria.

443 citations


Cited by
More filters
Journal ArticleDOI
08 Jun 2012-Science
TL;DR: Advances in understanding of the interactions between resident microbes and the immune system are reviewed and the implications for human health are reviewed.
Abstract: The large numbers of microorganisms that inhabit mammalian body surfaces have a highly coevolved relationship with the immune system. Although many of these microbes carry out functions that are critical for host physiology, they nevertheless pose the threat of breach with ensuing pathologies. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, thus ensuring that the mutualistic nature of the host-microbial relationship is maintained. At the same time, resident bacteria profoundly shape mammalian immunity. Here, we review advances in our understanding of the interactions between resident microbes and the immune system and the implications of these findings for human health.

3,330 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: In high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses.

3,257 citations

Journal ArticleDOI
01 Jan 2017-Gut
TL;DR: This fifth edition of the Maastricht Consensus Report describes how experts from 24 countries examined new data related to H. pylori infection in the various clinical scenarios and provided recommendations on the basis of the best available evidence and relevance.
Abstract: Important progress has been made in the management of Helicobacter pylori infection and in this fifth edition of the Maastricht Consensus Report, key aspects related to the clinical role of H. pylori were re-evaluated in 2015. In the Maastricht V/Florence Consensus Conference, 43 experts from 24 countries examined new data related to H. pylori in five subdivided workshops: (1) Indications/Associations, (2) Diagnosis, (3) Treatment, (4) Prevention/Public Health, (5) H. pylori and the Gastric Microbiota. The results of the individual workshops were presented to a final consensus voting that included all participants. Recommendations are provided on the basis of the best available evidence and relevance to the management of H. pylori infection in the various clinical scenarios.

2,219 citations

Journal ArticleDOI
01 May 2012-Gut
TL;DR: In this 4th edition of the Maastricht consensus report aspects related to the clinical role of H pylori were looked at again in 2010, with recommendations to guide doctors involved in the management of this infection associated with various clinical conditions.
Abstract: Management of Helicobacter pylori infection is evolving and in this 4th edition of the Maastricht consensus report aspects related to the clinical role of H pylori were looked at again in 2010. In the 4th Maastricht/Florence Consensus Conference 44 experts from 24 countries took active part and examined key clinical aspects in three subdivided workshops: (1) Indications and contraindications for diagnosis and treatment, focusing on dyspepsia, non-steroidal anti-inflammatory drugs or aspirin use, gastro-oesophageal reflux disease and extraintestinal manifestations of the infection. (2) Diagnostic tests and treatment of infection. (3) Prevention of gastric cancer and other complications. The results of the individual workshops were submitted to a final consensus voting to all participants. Recommendations are provided on the basis of the best current evidence and plausibility to guide doctors involved in the management of this infection associated with various clinical conditions.

2,167 citations

Journal ArticleDOI
TL;DR: The large majority of studies on the role of the microbiome in the pathogenesis of disease are correlative and preclinical; several have influenced clinical practice.
Abstract: The large majority of studies on the role of the microbiome in the pathogenesis of disease are correlative and preclinical; several have influenced clinical practice.

2,083 citations