scispace - formally typeset
Search or ask a question
Author

Charlotte Krawzcyzk

Bio: Charlotte Krawzcyzk is an academic researcher. The author has contributed to research in topics: Geothermal gradient. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: Weydt et al. as discussed by the authors developed a new workflow to overcome the gap of knowledge of the reservoir properties, which is used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment.
Abstract: . Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon is often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU H2020, grant agreement no. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analog and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside the Los Humeros and Acoculco calderas and the surrounding areas and from exhumed “fossil systems” in Las Minas and Zacatlan. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, and heat capacity, as well as ultrasonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young's modulus, Poisson's ratio, the bulk modulus, the shear modulus, fracture toughness, cohesion and the friction angle. In addition, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al., 2020; https://doi.org/10.25534/tudatalib-201.10 ), comprising 34 parameters determined on more than 2160 plugs. More than 31 000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.

20 citations

Journal ArticleDOI
TL;DR: Löer et al. as mentioned in this paper presented a 1D shear-velocity model for Los Humeros geothermal field (Mexico) obtained from three-component beamforming of ambient seismic noise, imaging for the first time the bottom of the sedimentary basement ∼5 km below the volcanic caldera, as well as the brittle-ductile transition at ∼ 10 km depth.
Abstract: Cite this article as Löer, K., T. Toledo, G. Norini, X. Zhang, A. Curtis, and E. H. Saenger (2020). Imaging the Deep Structures of Los Humeros Geothermal Field, Mexico, Using Three-Component Seismic Noise Beamforming, Seismol. Res. Lett. 91, 3269–3277, doi: 10.1785/ 0220200022. Supplemental Material We present a 1D shear-velocity model for Los Humeros geothermal field (Mexico) obtained from three-component beamforming of ambient seismic noise, imaging for the first time the bottom of the sedimentary basement ∼5 km below the volcanic caldera, as well as the brittle-ductile transition at ∼ 10 km depth. Rayleigh-wave dispersion curves are extracted from ambient seismic noise measurements and inverted using a Markov chain Monte Carlo scheme. The resulting probability density function provides the shear-velocity distribution down to 15 km depth, hence, much deeper than other techniques applied in the area. In the upper 4 km, our model conforms to a profile from local seismicity analysis and matches geological structure inferred from well logs, which validates the methodology. Complementing information fromwell logs and outcrops at the near surface, discontinuities in the seismic profile can be linked to geological transitions allowing us to infer structural information of the deeper subsurface. By constraining the extent of rocks with brittle behavior and permeability conditions at greater depths, our results are of paramount importance for the future exploitation of the reservoir and provide a basis for the geological and thermodynamic modeling of active superhot geothermal systems, in general. Introduction Los Humeros volcanic complex (LHVC; Fig. 1), located in the eastern part of the Trans-Mexican volcanic belt (TMVB), hosts a conventional geothermal field (Ferrari et al., 2012; GutiérrezNegrín, 2019). On-going hydrothermal activity makes the LHVC a favorable area for geothermal exploitation, and a geothermal power plant has been operating since the 1990s. The LHVC has been identified as an important natural laboratory for the development of general models of superhot geothermal systems (SHGSs) in volcanic calderas (e.g., Jolie et al., 2018). Although extensive geological field studies and well log analyses have provided many constraints on the near-surface geology of the caldera complex and conventional geothermal reservoir, conditions at depths greater than 2–3 km are largely unknown and currently being studied intensively (Jolie et al., 2018). It is assumed that superhot fluids could exist in the carbonate rock basement underlying the caldera (Jolie et al., 2018). These rocks might exhibit secondary permeability related to the damage zone of active resurgence faults and inherited pervasive basement structures (Lorenzo-Pulido, 2008; Rocha-López et al., 2010; Norini et al., 2015, 2019; Jolie et al., 2018). The maximum depth of these brittle structures is defined by the brittle-ductile (BD) transition zone, which thus plays an important role in geothermal exploration because upper crustal faults and fractures behave as hydraulic channels for the circulation of geothermal fluids (e.g., Ranalli and Rybach, 2005). In SHGSs that exhibit a positive thermal anomaly, the depth of the BD transition may differ from areas with a normal thermal gradient, as rocks become progressively more ductile with increasing temperature. Thus, a positive 1. Department of Civil and Environmental Engineering, Bochum University of Applied Sciences, Bochum, Germany; 2. Now at Department of Geology and Geophysics, University of Aberdeen, Aberdeen, United Kingdom; 3. German Research Centre for Geosciences GFZ, Section 4.8 Geoenergy, Section 2.2 Geophysical Deep Sounding, Potsdam, Germany; 4. Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Area della Ricerca CNR—ARM3, Milan, Italy; 5. School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom; 6. Institut für Geophysik, ETH Zürich, Zürich, Switzerland; 7. Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum, Germany; 8. Fraunhofer-Einrichtung für Energieinfrastruktur und Geothermie IEG, Bochum, Germany *Corresponding author: katrin.loeer@hs-bochum.de; katrin.loer@abdn.ac.uk © Seismological Society of America Volume 91 • Number 6 • November 2020 • www.srl-online.org Seismological Research Letters 3269 Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/91/6/3269/5176463/srl-2020022.1.pdf by University of Edinburgh user on 08 November 2020 thermal anomaly could potentially limit the volume of rocks in which secondary permeability may exist. We use three-component (3C) beamforming to extract structural information from ambient seismic noise. 3C beamforming is an array technique, which, like standard beamforming, not only estimates the dominant propagation direction and wavenumber of a recorded wavefield, but in addition determines the polarization of the wavefield by comparing phase shifts across different components (Riahi et al., 2013). As a result, different wave types can be distinguished and their propagation parameters analyzed separately. This allows us, for example, to estimate wavefield composition and surface-wave anisotropy, which is, however, beyond the scope of this study. Here, we consider fundamental mode Rayleigh waves only and extract dispersion curves from frequency–wavenumber (f-k) histograms; these are inverted for a shear-velocity depth profile using a reversible-jump Markov chain Monte Carlo (rj-McMC) algorithm. Although this algorithm is computationally expensive, it has the advantage of providing uncertainties for the velocity profile by finding the distribution of models that are consistent with data. 3C beamforming does not require impulsive (man-made or natural) seismic sources and is thus cheap, flexible, and applicable also in aseismic areas. Whereas cross-correlation-based ambient noise methods typically rely on month-long recordings, from beamforming, we extract stable dispersion curves from only 1 day of seismic noise data. Depending on the array geometry and seismic noise spectrum, the depth sensitivity of 3C beamforming can exceed that of other seismic methods by several kilometers, as we will show in this study. The analysis of four reflection seismic lines recorded across the LHVC, for example, provided 2D velocity maps and seismic sections down to 6 km at the most (Jousset, Ágústsson, et al., 2019). Ambient noise cross-correlation methods applied in the same area, but using a larger array, produce 3D tomographic Figure 1. (a) Simplified geological map of the Los Humeros volcanic complex (LHVC) and surrounding basement, on a shaded relief. The trace of the A-A′ geological cross section of panel (b) is shown. Triangles denote seismic station locations of the dense broadband (DB) network, circles denote geothermal wells. In the upper-right inset, the location of the LHVC within the TransMexican volcanic belt (TMVB) is indicated. (b) A–A′ schematic geological cross section showing the subsurface geometry of the main structures and stratigraphic units. Trace of the geological cross section is shown in panel (a). Modified from Norini et al. (2019). ENE, east-northeast; LH, Los Humeros caldera ring fault; LHh, inferred flexure plane of the Los Humeros trap-door caldera; LP, Los Potreros caldera ring fault; TF: thrust fault; RF, resurgence fault (red lines); WSW, west-southwest. The color version of this figure is available only in the electronic edition. 3270 Seismological Research Letters www.srl-online.org • Volume 91 • Number 6 • November 2020 Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/91/6/3269/5176463/srl-2020022.1.pdf by University of Edinburgh user on 08 November 2020 images down to a maximum of 10 km depth (Granados Chavarria et al., 2020; Martins et al., 2020). In a similar manner, a recent local earthquake tomography study provides information only of the upper 3–4 km (Toledo et al., 2020). We show that 3C beamforming provides information to greater than 10 km depth. In the following, we describe geology and available datasets, introduce both 3C beamforming and the rj-McMC inversion algorithm, and summarize our findings in Los Humeros and their implications for SHGSs, in general. Geology of LHVC The LHVC basement is composed of Mesozoic sedimentary rocks involved in the Late Cretaceous–Eocene compressive orogenic phase that generated the Mexican fold and thrust belt (sedimentary basement unit in Fig. 1) (Fitz-Díaz et al., 2017; references therein). The sedimentary basement rests above the Precambrian–Paleozoic crystalline basement of the Teziutlan Massif unit, made of greenschists, granodiorites, and granites (e.g., Suter, 1987; Suter et al., 1997; Ortuño-Arzate et al., 2003; Ángeles-Moreno, 2012; Fitz-Díaz et al., 2017) (Fig. 1a,b). Since the Eocene, the area underwent a limited extensional tectonic phase, associated with northeast-striking normal faults and the emplacement of Eocene–Miocene granite and granodiorite magmatic intrusions (Fig. 1a). The TMVB volcanic activity occurred from 10.5 to 1.55 Ma with the emplacement of fractured andesites, basaltic lava flows, and few volcaniclastic levels (old volcanic succession unit in Fig. 1) (e.g., Yanez and Garcia, 1982; Ferriz and Mahood, 1984; López-Hernández, 1995; Cedillo-Rodríguez, 1997; Carrasco-Núñez, Hernandez, et al., 2017; Carrasco-Núñez et al., 2018). Volcanic activity resumed ∼700 ka ago with the emplacement of the Pleistocene– Holocene LHVC (LHVC unit in Fig. 1) (e.g., Carrasco-Núñez, Hernandez, et al., 2017; Carrasco-Núñez et al., 2018). This volcanic complex represents a basaltic andesite–rhyolite system of two nested calderas, namely the outer Los Humeros caldera and the inner Los Potreros caldera (Carrasco-Núñez, Hernandez, et al., 2017; Calcagno et al., 2018) (Fig. 1a). The LHVC caldera stage occurred between ∼165 and ∼69 ka and consisted of two major ca

10 citations

Journal ArticleDOI
TL;DR: In this article , the authors share 3D geological models that were constructed at different scales in two Mexican geothermal areas as part of the European-Mexican GEMex project.
Abstract: This paper aims at sharing 3D geological models that were constructed at different scales in two Mexican geothermal areas as part of the European-Mexican GEMex project. The project was devoted to investigate superhot resources in Los Humeros and enhanced geothermal systems in Acoculco, both areas located in eastern Mexico. To build confidence in the resultant datasets and to potentially inform the development of models in similar contexts, the methodology is also described. The models integrate the main geological and geothermal features of the study areas and served as a framework for subsequent calculations and simulations. Preliminary models were based on data available at the beginning of the project, and were updated several times as new geological, geochemical, and geophysical field-data were obtained. The construction of the geomodels was performed in a collaborative and interdisciplinary way, using an existing software, and ultimately enabled a consensus interpretation and representation to be reached by the several disciplinary experts involved.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the authors share 3D geological models that were constructed at different scales in two Mexican geothermal areas as part of the European-Mexican GEMex project.
Abstract: This paper aims at sharing 3D geological models that were constructed at different scales in two Mexican geothermal areas as part of the European-Mexican GEMex project. The project was devoted to investigate superhot resources in Los Humeros and enhanced geothermal systems in Acoculco, both areas located in eastern Mexico. To build confidence in the resultant datasets and to potentially inform the development of models in similar contexts, the methodology is also described. The models integrate the main geological and geothermal features of the study areas and served as a framework for subsequent calculations and simulations. Preliminary models were based on data available at the beginning of the project, and were updated several times as new geological, geochemical, and geophysical field-data were obtained. The construction of the geomodels was performed in a collaborative and interdisciplinary way, using an existing software, and ultimately enabled a consensus interpretation and representation to be reached by the several disciplinary experts involved.

5 citations

Journal ArticleDOI
TL;DR: In this article , the authors used an ambient seismic noise technique referred to as three-component beamforming to detect and characterize faults and fractures at the Los Humeros Geothermal Field (LHGF) in Mexico.
Abstract: Abstract. Faults and fractures are crucial parameters for geothermal systems as they provide secondary permeability allowing fluids to circulate and heat up in the subsurface. In this study, we use an ambient seismic noise technique referred to as three-component (3C) beamforming to detect and characterize faults and fractures at a geothermal field in Mexico. We perform 3C beamforming on ambient noise data collected at the Los Humeros Geothermal Field (LHGF) in Mexico. The LHGF is situated in a complicated geological area, part of a volcanic complex with an active tectonic fault system. Although the LHGF has been exploited for geothermal resources for over 3 decades, the field has yet to be explored at depths greater than 3 km. Consequently, it is currently unknown how deep faults and fractures permeate, and the LHGF has yet to be exploited to its full capacity. Three-component beamforming extracts the polarizations, azimuths and phase velocities of coherent waves as a function of frequency, providing a detailed characterization of the seismic wavefield. In this study, 3C beamforming of ambient seismic noise is used to determine surface wave velocities as a function of depth and propagation direction. Anisotropic velocities are assumed to relate to the presence of faults giving an indication of the maximum depth of permeability, a vital parameter for fluid circulation and heat flow throughout a geothermal field. Three-component beamforming was used to determine if the complex surface fracture system permeates deeper than is currently known. Our results show that anisotropy of seismic velocities does not decline significantly with depth, suggesting that faults and fractures, and hence permeability, persist below 3 km. Moreover, estimates of fast and slow directions, with respect to surface wave velocities, are used to determine the orientation of faults with depth. The north-east (NE) and north–north-west (NNW) orientation of the fast direction corresponds to the orientation of the Arroyo Grande and Maxtaloya–Los Humeros Fault swarms, respectively. NE and NNW orientations of anisotropy align with other major faults within the LHGF at depths permeating to 6 km.

1 citations