scispace - formally typeset
Search or ask a question
Author

Charlotte Sleight

Bio: Charlotte Sleight is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: AdS/CFT correspondence & Gauge theory. The author has an hindex of 23, co-authored 36 publications receiving 1875 citations. Previous affiliations of Charlotte Sleight include Max Planck Society & Institute for Advanced Study.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the quartic vertex is obtained from the field theory four-point function of the operator dual to the bulk scalar, by making use of previous results for the Witten diagrams of higher-spin exchanges.
Abstract: Clarifying the locality properties of higher-spin gravity is a pressing task, but notoriously difficult due to the absence of a weakly-coupled flat regime. The simplest non-trivial case where this question can be addressed is the quartic self-interaction of the AdS scalar field present in the higher-spin multiplet. We investigate this issue in the context of the holographic duality between the minimal bosonic higher-spin theory on AdS4 and the free O(N) vector model in three dimensions. In particular, we determine the exact explicit form of the derivative expansion of the bulk scalar quartic vertex. The quartic vertex is obtained from the field theory four-point function of the operator dual to the bulk scalar, by making use of our previous results for the Witten diagrams of higher-spin exchanges. This is facilitated by establishing the conformal block expansions of both the boundary four-point function and the dual bulk Witten diagram amplitudes. We show that the vertex we find satisfies a generalised notion of locality.

220 citations

Journal ArticleDOI
TL;DR: A complete holographic reconstruction of the cubic couplings in the minimal bosonic higher spin theory in (d+1)-dimensional anti- de Sitter space is provided and the operator-product expansion coefficients of all single-trace conserved currents in the d-dimensional free scalar O(N) vector model are determined.
Abstract: In this Letter we provide a complete holographic reconstruction of the cubic couplings in the minimal bosonic higher spin theory in (d+1)-dimensional anti- de Sitter space. For this purpose, we also determine the operator-product expansion coefficients of all single-trace conserved currents in the d-dimensional free scalar O(N) vector model, and we compute the tree-level three-point Witten diagram amplitudes for a generic cubic interaction of higher spin gauge fields in the metriclike formulation.

182 citations

Journal ArticleDOI
TL;DR: In this article, the Mellin-Barnes representation of correlators in Fourier space was used for boundary correlation functions in both the anti-de Sitter and de Sitter spaces.
Abstract: We develop a Mellin space approach to boundary correlation functions in anti-de Sitter (AdS) and de Sitter (dS) spaces. Using the Mellin-Barnes representation of correlators in Fourier space, we show that the analytic continuation between AdSd+1 and dSd+1 is encoded in a collection of simple relative phases. This allows us to determine the late-time tree-level three-point correlators of spinning fields in dSd+1 from known results for Witten diagrams in AdSd+1 by multiplication with a simple trigonometric factor. At four point level, we show that Conformal symmetry fixes exchange four-point functions both in AdSd+1 and dSd+1 in terms of the dual Conformal Partial Wave (which in Fourier space is a product of boundary three-point correlators) up to a factor which is determined by the boundary conditions. In this work we focus on late-time four-point correlators with external scalars and an exchanged field of integer spin-l. The Mellin-Barnes representation makes manifest the analytic structure of boundary correlation functions, providing an analytic expression for the exchange four-point function which is valid for general d and generic scaling dimensions, in particular massive, light and (partially-)massless fields. It moreover naturally identifies boundary correlation functions for generic fields with multi-variable Meijer-G functions. When d = 3 we reproduce existing explicit results available in the literature for external conformally coupled and massless scalars. From these results, assuming the weak breaking of the de Sitter isometries, we extract the corresponding correction to the inflationary three-point function of general external scalars induced by a general spin- l field at leading order in slow roll. These results provide a step towards a more systematic understanding of de Sitter observables at tree level and beyond using Mellin space methods.

179 citations

Journal ArticleDOI
TL;DR: In this article, the Mellin-Barnes representation is used for the evaluation of late-time momentum-space correlation functions of quantum fields in (d + 1)-dimensional de Sitter space.
Abstract: We propose a Mellin space approach to the evaluation of late-time momentum-space correlation functions of quantum fields in (d + 1)-dimensional de Sitter space. The Mellin-Barnes representation makes manifest the analytic structure of late-time correlators and, more generally, provides a convenient general d framework for the study of conformal correlators in momentum space. In this work we focus on tree-level correlation functions of general scalars as a prototype, including n-point contact diagrams and 4-point exchanges. For generic scalars, both the contact and exchange diagrams are given by (generalised) Hypergeometric functions, which reduce to existing expressions available in the literature for d = 3 and external scalars which are either simultaneously conformally coupled or massless. This approach can also be used for the perturbative bulk evaluation of momentum space boundary correlators in (d + 1)-dimensional anti-de Sitter space (Witten diagrams).

152 citations

Journal ArticleDOI
TL;DR: In this article, the authors compute the complete bulk-to-bulk propagators for massless bosonic higher-spin fields in the metric-like formulation, in any dimension and in various gauges.
Abstract: Within holography, we calculate the contribution of an arbitrary spin-s gauge boson exchange in AdS d+1 to the four-point function with scalar operators on the boundary. As an important ingredient, we first compute the complete bulk-to-bulk propagators for massless bosonic higher-spin fields in the metric-like formulation, in any dimension and in various gauges. The split representation of the bulk-to-bulk propagators in terms of bulk-to-boundary propagators allows to present the higher-spin exchange diagram in the form of a conformal partial wave expansion. Our results provide a step towards the larger goal of the holographic reconstruction of bulk interactions, and of clarifying bulk locality.

143 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Conformal field theories have been long known to describe the universal physics of scale invariant critical points as discussed by the authors, and they describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory.
Abstract: Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to study these intricate strongly coupled theories nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been fully realized in three, four, and other dimensions of interest. This renaissance has been possible both due to significant analytical progress in understanding how to set up the bootstrap equations and the development of numerical techniques for finding or constraining their solutions. These developments have led to a number of groundbreaking results, including world record determinations of critical exponents and correlation function coefficients in the Ising and $O(N)$ models in three dimensions. This article will review these exciting developments for newcomers to the bootstrap, giving an introduction to conformal field theories and the theory of conformal blocks, describing numerical techniques for the bootstrap based on convex optimization, and summarizing in detail their applications to fixed points in three and four dimensions with no or minimal supersymmetry.

658 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory.
Abstract: We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.

508 citations

Journal ArticleDOI
TL;DR: In this article, a new method for decomposing Witten diagrams into conformal blocks is proposed, based on the geodesic Witten diagram, which is essentially an ordinary exchange diagram.
Abstract: We develop a new method for decomposing Witten diagrams into conformal blocks. The steps involved are elementary, requiring no explicit integration, and operate directly in position space. Central to this construction is an appealingly simple answer to the question: what object in AdS computes a conformal block? The answer is a “geodesic Witten diagram”, which is essentially an ordinary exchange Witten diagram, except that the cubic vertices are not integrated over all of AdS, but only over bulk geodesics connecting the boundary operators. In particular, we consider the case of four-point functions of scalar operators, and show how to easily reproduce existing results for the relevant conformal blocks in arbitrary dimension.

342 citations

Journal ArticleDOI
TL;DR: In this paper, the quartic vertex is obtained from the field theory four-point function of the operator dual to the bulk scalar, by making use of previous results for the Witten diagrams of higher-spin exchanges.
Abstract: Clarifying the locality properties of higher-spin gravity is a pressing task, but notoriously difficult due to the absence of a weakly-coupled flat regime. The simplest non-trivial case where this question can be addressed is the quartic self-interaction of the AdS scalar field present in the higher-spin multiplet. We investigate this issue in the context of the holographic duality between the minimal bosonic higher-spin theory on AdS4 and the free O(N) vector model in three dimensions. In particular, we determine the exact explicit form of the derivative expansion of the bulk scalar quartic vertex. The quartic vertex is obtained from the field theory four-point function of the operator dual to the bulk scalar, by making use of our previous results for the Witten diagrams of higher-spin exchanges. This is facilitated by establishing the conformal block expansions of both the boundary four-point function and the dual bulk Witten diagram amplitudes. We show that the vertex we find satisfies a generalised notion of locality.

220 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed the bulk theory of the SYK model, a quantum mechanical model of N ≫ 1 Majorana fermions with a q-body, random interaction.
Abstract: The SYK model, a quantum mechanical model of N ≫ 1 Majorana fermions χ i , with a q-body, random interaction, is a novel realization of holography. It is known that the AdS2 dual contains a tower of massive particles, yet there is at present no proposal for the bulk theory. As SYK is solvable in the 1/N expansion, one can systematically derive the bulk. We initiate such a program, by analyzing the fermion two, four and six-point functions, from which we extract the tower of singlet, large N dominant, operators, their dimensions, and their three-point correlation functions. These determine the masses of the bulk fields and their cubic couplings. We present these couplings, analyze their structure and discuss the simplifications that arise for large q.

215 citations