scispace - formally typeset
Search or ask a question
Author

Chen-Ching Liu

Bio: Chen-Ching Liu is an academic researcher from Virginia Tech. The author has contributed to research in topics: Electric power system & Electricity market. The author has an hindex of 57, co-authored 269 publications receiving 12126 citations. Previous affiliations of Chen-Ching Liu include Washington State University & Purdue University.


Papers
More filters
Proceedings ArticleDOI
28 Sep 1995
TL;DR: A voltage controllability region is obtained for a dynamic, n-bus power system model and helps to determine if the trajectories of a large, dynamic power system can be fully controlled with the available control devices.
Abstract: This research is concerned with the power system voltage controllability issue. A voltage controllability region is obtained for a dynamic, n-bus power system model. The complete controllability region helps to determine if the trajectories of a large, dynamic power system can be fully controlled with the available control devices.

2 citations

Proceedings ArticleDOI
23 Jun 2003
TL;DR: The formulation of a market clearing optimization problem that maximized the social welfare is reported, and the market optimization is solved for cases where the market participants have private information about their generation costs.
Abstract: The competitive market environment for the power industry has resulted in new optimization problems that need to be solved such as bidding, pricing, risk management, and market clearing. These problems are complicated by the fact that power systems are nonlinear and some aspects of the problem are ill-formulated. In this paper, we report our formulation of a market clearing optimization problem that maximized the social welfare. The market optimization is solved for cases where the market participants have private information about their generation costs. The proposed formulation incorporates the nonlinear nature of the MW power flows on the transmission grid. The IEEE 30-bus system is modified and used for testing of the proposed techniques.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an outage management and feeder restoration algorithm for distribution systems with multiple DERs by incorporating smart meter data, and the proposed method has been validated with modified IEEE 123-Bus and 8500-Node Test Feeders.
Abstract: The increasing deployment of distributed energy resources (DERs) and microgrids benefits power grids by improving system resilience. In a resilience mode without the utility system, the distribution grid relies on DERs to serve critical load. In such a severe event with multiple faults on the distribution feeders, actuation of various protective devices (PDs) divides the distribution system into electrical islands. The undetected actuated PDs due to fault current contributions from DERs can delay the restoration process, thereby reducing the system resilience. In this paper, algorithms are proposed for outage management and feeder restoration for distribution systems with multiple DERs. The Advanced Outage Management (AOM) identifies the faulted sections and actuated PDs in a distribution system with DERs by incorporating smart meter data. The Advanced Feeder Restoration (AFR) is proposed to restore a distribution system with available energy resources taking into consideration the availability of utility sources and DERs as well as the feeder configuration. By partitioning the system into islands, critical load will be served with the available generation resources within islands. When the utility systems become available, the optimal path will be determined to reconnect these islands back to substations and restore the remaining load. The proposed method has been validated with modified IEEE 123-Bus and 8500-Node Test Feeders. Simulation results demonstrate the capability of the integrated AOM and AFR to enhance distribution system resilience.

2 citations

Posted Content
27 Mar 2020
TL;DR: A real-time electric vehicle charging scheduling problem as an mixed-integer linear program (MILP) that maximizes the profit of the aggregator, enhancing the utilization of available infrastructure and computational and performance superiority of the proposed MILP technique.
Abstract: The rapid escalation in plug-in electric vehicles (PEVs) and their uncoordinated charging patterns pose several challenges in distribution system operation. Some of the undesirable effects include overloading of transformers, rapid voltage fluctuations, and over/under voltages. While this compromises the consumer power quality, it also puts on extra stress on the local voltage control devices. These challenges demand for a well-coordinated and power network-aware charging approach for PEVs in a community. This paper formulates a real-time electric vehicle charging scheduling problem as an mixed-integer linear program (MILP). The problem is to be solved by an aggregator, that provides charging service in a residential community. The proposed formulation maximizes the profit of the aggregator, enhancing the utilization of available infrastructure. With a prior knowledge of load demand and hourly electricity prices, the algorithm uses a moving time horizon optimization approach, allowing the number of vehicles arriving unknown. In this realistic setting, the proposed framework ensures that power system constraints are satisfied and guarantees desired PEV charging level within stipulated time. Numerical tests on a IEEE 13-node feeder system demonstrate the computational and performance superiority of the proposed MILP technique.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations

01 Jan 2003

3,093 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations