scispace - formally typeset
Search or ask a question
Author

Chen-Jui Huang

Bio: Chen-Jui Huang is an academic researcher from National Taiwan University of Science and Technology. The author has contributed to research in topics: Electrolyte & Anode. The author has an hindex of 17, co-authored 45 publications receiving 812 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A locally concentrated electrolyte, 2 M LiPF6, in ethylene carbonate/diethyl carbonate diluted with fluoroethylene carbonate (FEC), which is stable within a wide potential range and shows high robustness to the effect of upper limit cutoff voltage is reported.
Abstract: Currently, concentrated electrolyte solutions are attracting special attention because of their unique characteristics such as unusually improved oxidative stability on both the cathode and anode sides, the absence of free solvent, the presence of more anion content, and the improved availability of Li+ ions. Most of the concentrated electrolytes reported are lithium bis(fluorosulfonyl)imide (LiFSI) salt with ether-based solvents because of the high solubility of salts in ether-based solvents. However, their poor anti-oxidation capability hindered their application especially with high potential cathode materials (>4.0 V). In addition, the salt is very costly, so it is not feasible from the cost analysis point of view. Therefore, here we report a locally concentrated electrolyte, 2 M LiPF6, in ethylene carbonate/diethyl carbonate (1:1 v/v ratio) diluted with fluoroethylene carbonate (FEC), which is stable within a wide potential range (2.5-4.5 V). It shows significant improvement in cycling stability of lithium with an average Coulombic efficiency (ACE) of ∼98% and small voltage hysteresis (∼30 mV) with a current density of 0.2 mA/cm2 for over 1066 h in Li||Cu cells. Furthermore, we ascertained the compatibility of the electrolyte for anode-free Li-metal batteries (AFLMBs) using Cu||LiNi1/3Mn1/3Co1/3O2 (NMC, ∼2 mA h/cm2) with a current density of 0.2 mA/cm2. It shows stable cyclic performance with ACE of 97.8 and 40% retention capacity at the 50th cycle, which is the best result reported for carbonate-based solvents with AFLMBs. However, the commercial carbonate-based electrolyte has 40%. The enhanced cycle life and well retained in capacity of the locally concentrated electrolyte is mainly because of the synergetic effect of FEC as the diluent to increase the ionic conductivity and form stable anion-derived solid electrolyte interphase. The locally concentrated electrolyte also shows high robustness to the effect of upper limit cutoff voltage.

122 citations

Journal ArticleDOI
TL;DR: In this article, the authors visualized lithium dendrite growth dynamics on the Cu surface by in operando transmission X-ray microscopy (TXM) and found that the aspect ratio (height/width) of deposited lithium has increased with charge passed during plating, indicating a faster growing from the base.
Abstract: Lithium dendrite growth dynamics on Cu surface is first visualized through a versatile and facile experimental cell by in operando transmission X-ray microscopy (TXM). Galvanostatic plating and stripping cycle(s) are applied on each cell. Upon plating/stripping at ∼1 mA cm–2, mossy lithium is clearly found growing and shrinking on the Cu surface as the application time increases. It is interesting to note that the aspect ratio (height/width) of deposited lithium has increased with charge passed during plating, indicating a faster growing from the base. In addition, the dendritic or mossy lithium has also been observed when various high current densities (25, 12.5, and 6.3 mA cm–2) are applied in different cycles, showing a severe dendritic lithium formation that could be induced by inhomogeneous current distribution. The clear structure of dead lithium is found after the cycling, which also shows a lower efficiency and higher hazard when a higher current density is applied. This work explores TXM as a use...

118 citations

Journal ArticleDOI
TL;DR: A model for quantitatively understanding Li nucleation and growth mechanism associated with SEI formation named as Li-SEI model is proposed, indicating that the current contributing from the electrolyte decomposition increases with time and the SEI fracture is more serious at higher overpotential or higher growth rate.
Abstract: Understanding the mechanism of Li nucleation and growth is essential for providing long cycle life and safe lithium ion batteries or lithium metal batteries. However, no quantitative report on Li metal deposition is available, to the best of our knowledge. We propose a model for quantitatively understanding the Li nucleation and growth mechanism associated with the solid-electrolyte interphase (SEI) formation, which we name the Li-SEI model. The current transients at various overpotentials initiate the nucleation and growth of Li metal on bare Cu foil. The Li-SEI model considering a three-dimensional diffusion-controlled instantaneous process (J3D-DC) with the simultaneous reduction of electrolyte decomposition (JSEI) due to the SEI fracture is employed for investigating the Li nucleation and growth mechanism. The individual contributions of experimental and theoretical transient states, i.e., the fundamental kinetic values of diffusion coefficient (D), rate of nucleation (N0), and rate constant of electrolyte decomposition (kSEI), can be determined from the Li-SEI model. Interestingly, JSEI increases with time, indicating that the current contributing from the electrolyte decomposition increases with time due to the SEI fracture upon Li deposition. Meanwhile, the kSEI increases with overpotential, indicating the SEI fracture is more serious at higher overpotential or higher growth rate. The kSEI is smaller in the electrolyte with fluoroethylene carbonate (FEC) additive, indicating that FEC additive can significantly suppress the SEI fracture during Li metal deposition. This proposed model opens a new way to quantitatively understand the Li nucleation and growth mechanism and electrolyte decomposition on various substrates or in different electrolytes.

115 citations

Journal ArticleDOI
TL;DR: Investigation of rechargeable aluminum batteries in situ and in situ/operando electrochemical and synchrotron X-ray diffraction experiments combined with theoretical modeling revealed stable AlCl4−/graphite intercalation up to stage 3 at low temperatures, whereasintercalation was reversible up toStage 4 at room temperature (RT).
Abstract: We investigated rechargeable aluminum (Al) batteries composed of an Al negative electrode, a graphite positive electrode, and an ionic liquid (IL) electrolyte at temperatures down to −40 °C. The reversible battery discharge capacity at low temperatures could be superior to that at room temperature. In situ/operando electrochemical and synchrotron X-ray diffraction experiments combined with theoretical modeling revealed stable AlCl 4 − /graphite intercalation up to stage 3 at low temperatures, whereas intercalation was reversible up to stage 4 at room temperature (RT). The higher-degree anion/graphite intercalation at low temperatures affords rechargeable Al battery with higher discharge voltage (up to 2.5 V, a record for Al battery) and energy density. A remarkable cycle life of >20,000 cycles at a rate of 6C (10 minutes charge time) was achievable for Al battery operating at low temperatures, corresponding to a >50-year battery life if charged/discharged once daily.

100 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Abstract: Aqueous zinc ion batteries (ZIBs) are truly promising contenders for the future large-scale electrical energy storage applications due to their cost-effectiveness, environmental friendliness, intri...

726 citations

10 Jun 2016
TL;DR: In this article, a superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte was proposed to solve the problem of metal-ion dissolution at high voltages.
Abstract: Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li(+) ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety.

532 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that anode-free lithium-metal pouch cells with a dual-salt LiDFOB/LiBF4 liquid electrolyte have 80% capacity remaining after 90 charge-discharge cycles.
Abstract: Cells with lithium-metal anodes are viewed as the most viable future technology, with higher energy density than existing lithium-ion batteries. Many researchers believe that for lithium-metal cells, the typical liquid electrolyte used in lithium-ion batteries must be replaced with a solid-state electrolyte to maintain the flat, dendrite-free lithium morphologies necessary for long-term stable cycling. Here, we show that anode-free lithium-metal pouch cells with a dual-salt LiDFOB/LiBF4 liquid electrolyte have 80% capacity remaining after 90 charge–discharge cycles, which is the longest life demonstrated to date for cells with zero excess lithium. The liquid electrolyte enables smooth dendrite-free lithium morphology comprised of densely packed columns even after 50 charge–discharge cycles. NMR measurements reveal that the electrolyte salts responsible for the excellent lithium morphology are slowly consumed during cycling. Extensive efforts have recently been geared towards developing all-solid-state batteries largely because of their potential to enable high-energy-density Li anodes. Here, the authors report a high-performance lithium pouch cell with no excess lithium, enabled by just a dual-salt liquid electrolyte.

520 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed literature on the causes and evidences for Li deposition, macroscopic morphology of Li deposition/plating, ageing mechanisms and shapes of capacity fade curves involving Li deposition.

460 citations