scispace - formally typeset
Search or ask a question
Author

Chen Xu

Bio: Chen Xu is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Nanowire & Nanogenerator. The author has an hindex of 21, co-authored 23 publications receiving 4156 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices and uses the vertically integrated nanogenerator to power a nanowire pH sensor and a Nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowiring.
Abstract: The lateral and vertical integration of ZnO piezoelectric nanowires allows for voltage and power outputs sufficient to power nanowire-based sensors.

1,465 citations

Journal ArticleDOI
TL;DR: This study proves the feasibility of using ZnO nanowire NGs for building self-powered systems, and its potential application in wireless biosensing, environmental/infrastructure monitoring, sensor networks, personal electronics, and even national security.
Abstract: We demonstrate the first self-powered system driven by a nanogenerator (NG) that works wirelessly and independently for long-distance data transmission. The NG was made of a free cantilever beam that consisted of a five-layer structure: a flexible polymer substrate, ZnO nanowire textured films on its top and bottom surfaces, and electrodes on the surfaces. When it was strained to 0.12% at a strain rate of 3.56% S(-1), the measured output voltage reached 10 V, and the output current exceeded 0.6 μA (corresponding power density 10 mW/cm(3)). A system was built up by integrating a NG, rectification circuit, capacitor for energy storage, sensor, and RF data transmitter. Wireless signals sent out by the system were detected by a commercial radio at a distance of 5-10 m. This study proves the feasibility of using ZnO nanowire NGs for building self-powered systems, and its potential application in wireless biosensing, environmental/infrastructure monitoring, sensor networks, personal electronics, and even national security.

398 citations

Journal ArticleDOI
TL;DR: This work demonstrates an innovative method for growing bunched TiO(2) NRs on flexible substrates that can be applied in flexible devices for energy harvesting and storage.
Abstract: Because of their special application in photovoltaics, the growth of one-dimensional single-crystalline TiO(2) nanostructures on a flexible substrate is receiving intensive attention. Here we present a study of rectangular bunched TiO(2) nanorod (NR) arrays grown on carbon fibers (CFs) from titanium by a "dissolve and grow" method. After a corrosion process in a strong acid solution, every single nanorod is etched into a number of small nanowires. Tube-shaped dye-sensitized solar cells are fabricated by using etched TiO(2) NRs-coated CFs as the photoanode. An absolute energy conversion efficiency of 1.28% has been demonstrated under 100 mW cm(-2) AM 1.5 illumination. This work demonstrates an innovative method for growing bunched TiO(2) NRs on flexible substrates that can be applied in flexible devices for energy harvesting and storage.

347 citations

Journal ArticleDOI
Youfan Hu1, Yan Zhang1, Chen Xu1, Guang Zhu1, Zhong Lin Wang1 
TL;DR: It is suggested that the geometry induced unipolar assembly of the conical nanowires in such a composite structure results in a macroscopic piezoelectric potential across its thickness by introducing a mechanical deformation, which may be responsible for driving the flow of the inductive charges between the top and bottom electrodes.
Abstract: We present a simple, cost-effective, robust, and scalable approach for fabricating a nanogenerator that gives an output power strong enough to continuously drive a commercial liquid crystal display. Utilizing the conical shape of the as-grown ZnO nanowires, a nanogenerator is fabricated by simply dispersing them onto a flat polymer film to form a rational "composite" structure. It is suggested that the geometry induced unipolar assembly of the conical nanowires in such a composite structure results in a macroscopic piezoelectric potential across its thickness by introducing a mechanical deformation, which may be responsible for driving the flow of the inductive charges between the top and bottom electrodes. A compressive strain of 0.11% at a straining rate of 3.67% s(-1) produces an output voltage up to 2 V (equivalent open circuit voltage of 3.3 V). This is a practical and versatile technology with the potential for powering small size personal electronics.

243 citations

Journal ArticleDOI
TL;DR: In this work, a nanogenerator (NG) was integrated onto the inner surface of a bicycle tire, demonstrating the possibility for energy harvesting from the motion of automobiles and showing the potential to work as a self-powered tire-pressure sensor and speed detector.
Abstract: Harvesting unexploited energy in the living environment to power small electronic devices and systems is attracting increasing massive attention. [ 1–7 ] As the size of the devices has shrunk to the nanoor microscale, the power consumption also decreased to a modest level, i.e., the microwatts to milliwatts range. It is entirely possible to drive such a device by directly scavenging energy from its working environment. This self-powered technology makes periodic battery replacement or recharging no longer necessary and it is thus attractive for portable or inaccessible devices. Mechanical energy is a very conventional energy source in our living environment, with sources including the vibration of a bridge, friction in mechanical transmission systems, deformation in the tires of moving automobiles, etc., all of which are normally wasted. This form of energy is particularly important when other sources of energy, such as sun light or thermal gradients, are not available. A nanogenerator (NG) is designed to transfer such energy into electric energy by the piezoelectric effect. [ 8–14 ] The fundamental mechanism of a NG is that, when it is dynamically strained under an extremely small force, a piezoelectric potential is generated in the nanowire and a transient fl ow of electrons is induced in an external load, as driven by the piezopotential to balance the Fermi levels at the two contacts. For bicycles, cars, trucks, and even airplanes, a self-powered monitoring system for measuring the inner tire pressure is not only important for the safe operation of the transportation tool, but also for saving energy. In this work, a NG was integrated onto the inner surface of a bicycle tire, demonstrating the possibility for energy harvesting from the motion of automobiles. A small liquid-crystal display (LCD) screen was lit directly using a NG that scavenges mechanical energy from deformation of the tire during its motion. The effective working area of the nanogenerator was about 1.5 cm × 0.5 cm and the maximum output power density approached 70 μ W cm − 3 . Integration of many nanogenerators is presented for scale-up. Furthermore, the NG showed the potential to work as a self-powered tire-pressure sensor and speed detector. This work provides a simple demonstration of the broad application prospects of NGs in the fi eld of energy harvesting and self-powered systems.

239 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a simple, low cost and effective approach of using the charging process in friction to convert mechanical energy into electric power for driving small electronics, which is fabricated by stacking two polymer sheets made of materials having distinctly different triboelectric characteristics, with metal films deposited on the top and bottom of the assembled structure.

4,069 citations

Journal ArticleDOI
03 Oct 2013-ACS Nano
TL;DR: This paper reviews the fundamentals of the TENG in the three basic operation modes: vertical contact-separation mode, in-plane sliding mode, and single-electrode mode and predicts that a better enhancement of the output power density will be achieved in the next few years.
Abstract: Triboelectrification is an effect that is known to each and every one probably since ancient Greek time, but it is usually taken as a negative effect and is avoided in many technologies. We have recently invented a triboelectric nanogenerator (TENG) that is used to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribo-polarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. Since the most useful materials for TENG are organic, it is also named organic nanogenerator, which is the first using organic materials for harvesting mechanical energy. In this paper, we review the fundamentals of the TENG in the three basic operation modes: vertical contact-...

2,102 citations

Journal ArticleDOI
TL;DR: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,†
Abstract: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,† †State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China ‡Department of Chemistry, College of Arts and Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States

1,990 citations

Journal ArticleDOI
Wei Zeng1, Lin Shu1, Qiao Li1, Song Chen1, Fei Wang1, Xiaoming Tao1 
TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Abstract: Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption

1,626 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the four modes, their theoretical modelling, and the applications of TENGs for harvesting energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water and more as well as self-powered sensors is provided in this article.
Abstract: Ever since the first report of the triboelectric nanogenerator (TENG) in January 2012, its output area power density has reached 500 W m−2, and an instantaneous conversion efficiency of ∼70% and a total energy conversion efficiency of up to 85% have been demonstrated. We provide a comprehensive review of the four modes, their theoretical modelling, and the applications of TENGs for harvesting energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water and more as well as self-powered sensors.

1,602 citations