scispace - formally typeset
Search or ask a question
Author

Cheng Chen

Bio: Cheng Chen is an academic researcher. The author has contributed to research in topics: Traffic flow & Advanced Traffic Management System. The author has an hindex of 2, co-authored 2 publications receiving 998 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A survey on the development of D2ITS is provided, discussing the functionality of its key components and some deployment issues associated with D2 ITS Future research directions for the developed system are presented.
Abstract: For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.

1,336 citations

Journal ArticleDOI
TL;DR: It is shown that the learning process of the forecasting model under the MapReduce framework can be accelerated from a computational perspective, and model fusion, which is the key problem of distributed modeling, is explicitly treated in this paper to enhance the capability of the forecast system in data processing and storage.
Abstract: With the availability of increasingly more new data sources collected for transportation in recent years, the computational effort for traffic flow forecasting in standalone modes has become increasingly demanding for large-scale networks. Distributed modeling strategies can be utilized to reduce the computational effort. In this paper, we present a MapReduce-based approach to processing distributed data to design a MapReduce framework of a traffic forecasting system, including its system architecture and data-processing algorithms. The work presented here can be applied to many traffic forecasting systems with models requiring a learning process (e.g., the neural network approach). We show that the learning process of the forecasting model under our framework can be accelerated from a computational perspective. Meanwhile, model fusion, which is the key problem of distributed modeling, is explicitly treated in this paper to enhance the capability of the forecasting system in data processing and storage.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper is aimed to demonstrate a close-up view about Big Data, including Big Data applications, Big Data opportunities and challenges, as well as the state-of-the-art techniques and technologies currently adopt to deal with the Big Data problems.

2,516 citations

Journal ArticleDOI
TL;DR: A novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently and is applied for the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction.
Abstract: Accurate and timely traffic flow information is important for the successful deployment of intelligent transportation systems. Over the last few years, traffic data have been exploding, and we have truly entered the era of big data for transportation. Existing traffic flow prediction methods mainly use shallow traffic prediction models and are still unsatisfying for many real-world applications. This situation inspires us to rethink the traffic flow prediction problem based on deep architecture models with big traffic data. In this paper, a novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently. A stacked autoencoder model is used to learn generic traffic flow features, and it is trained in a greedy layerwise fashion. To the best of our knowledge, this is the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction. Moreover, experiments demonstrate that the proposed method for traffic flow prediction has superior performance.

2,306 citations

Journal ArticleDOI
Shengnan Guo1, Youfang Lin1, Ning Feng1, Chao Song1, Huaiyu Wan1 
17 Jul 2019
TL;DR: Experiments on two real-world datasets from the Caltrans Performance Measurement System demonstrate that the proposed ASTGCN model outperforms the state-of-the-art baselines.
Abstract: Forecasting the traffic flows is a critical issue for researchers and practitioners in the field of transportation. However, it is very challenging since the traffic flows usually show high nonlinearities and complex patterns. Most existing traffic flow prediction methods, lacking abilities of modeling the dynamic spatial-temporal correlations of traffic data, thus cannot yield satisfactory prediction results. In this paper, we propose a novel attention based spatial-temporal graph convolutional network (ASTGCN) model to solve traffic flow forecasting problem. ASTGCN mainly consists of three independent components to respectively model three temporal properties of traffic flows, i.e., recent, daily-periodic and weekly-periodic dependencies. More specifically, each component contains two major parts: 1) the spatial-temporal attention mechanism to effectively capture the dynamic spatialtemporal correlations in traffic data; 2) the spatial-temporal convolution which simultaneously employs graph convolutions to capture the spatial patterns and common standard convolutions to describe the temporal features. The output of the three components are weighted fused to generate the final prediction results. Experiments on two real-world datasets from the Caltrans Performance Measurement System (PeMS) demonstrate that the proposed ASTGCN model outperforms the state-of-the-art baselines.

1,086 citations

Journal ArticleDOI
TL;DR: It is presented that MTL can improve the generalization performance of shared tasks and a grouping method based on the weights in the top layer to make MTL more effective is proposed to take full advantage of weight sharing in the deep architecture.
Abstract: Traffic flow prediction is a fundamental problem in transportation modeling and management. Many existing approaches fail to provide favorable results due to being: 1) shallow in architecture; 2) hand engineered in features; and 3) separate in learning. In this paper we propose a deep architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top. A DBN is employed here for unsupervised feature learning. It can learn effective features for traffic flow prediction in an unsupervised fashion, which has been examined and found to be effective for many areas such as image and audio classification. To the best of our knowledge, this is the first paper that applies the deep learning approach to transportation research. To incorporate multitask learning (MTL) in our deep architecture, a multitask regression layer is used above the DBN for supervised prediction. We further investigate homogeneous MTL and heterogeneous MTL for traffic flow prediction. To take full advantage of weight sharing in our deep architecture, we propose a grouping method based on the weights in the top layer to make MTL more effective. Experiments on transportation data sets show good performance of our deep architecture. Abundant experiments show that our approach achieved close to 5% improvements over the state of the art. It is also presented that MTL can improve the generalization performance of shared tasks. These positive results demonstrate that deep learning and MTL are promising in transportation research.

940 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the existing literature on short-term traffic forecasting and offer suggestions for future work, focusing on 10 challenging, yet relatively under researched, directions.
Abstract: Since the early 1980s, short-term traffic forecasting has been an integral part of most Intelligent Transportation Systems (ITS) research and applications; most effort has gone into developing methodologies that can be used to model traffic characteristics and produce anticipated traffic conditions. Existing literature is voluminous, and has largely used single point data from motorways and has employed univariate mathematical models to predict traffic volumes or travel times. Recent developments in technology and the widespread use of powerful computers and mathematical models allow researchers an unprecedented opportunity to expand horizons and direct work in 10 challenging, yet relatively under researched, directions. It is these existing challenges that we review in this paper and offer suggestions for future work.

927 citations