scispace - formally typeset
Search or ask a question
Author

Cheng S. Jin

Bio: Cheng S. Jin is an academic researcher from Princess Margaret Cancer Centre. The author has contributed to research in topics: Photothermal therapy & Photodynamic therapy. The author has an hindex of 17, co-authored 26 publications receiving 2473 citations. Previous affiliations of Cheng S. Jin include University Health Network & University of Toronto.

Papers
More filters
Journal ArticleDOI
TL;DR: The development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.
Abstract: Optically active nanomaterials promise to advance a range of biophotonic techniques through nanoscale optical effects and integration of multiple imaging and therapeutic modalities. Here, we report the development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties. Porphysomes enabled the sensitive visualization of lymphatic systems using photoacoustic tomography. Near-infrared fluorescence generation could be restored on dissociation, creating opportunities for low-background fluorescence imaging. As a result of their organic nature, porphysomes were enzymatically biodegradable and induced minimal acute toxicity in mice with intravenous doses of 1,000 mg kg^(−1). In a similar manner to liposomes, the large aqueous core of porphysomes could be passively or actively loaded. Following systemic administration, porphysomes accumulated in tumours of xenograft-bearing mice and laser irradiation induced photothermal tumour ablation. The optical properties and biocompatibility of porphysomes demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.

1,147 citations

Journal ArticleDOI
12 Feb 2013-ACS Nano
TL;DR: It is determined that nanostructured porphyrin PTT enhancers are advantageous to overcome hypoxic conditions to achieve effective ablation of solid tumors.
Abstract: Tumor hypoxia is increasingly being recognized as a characteristic feature of solid tumors and significantly complicates many treatments based on radio-, chemo-, and phototherapies. While photodynamic therapy (PDT) is based on photosensitizer interactions with diffused oxygen, photothermal therapy (PTT) has emerged as a new phototherapy that is predicted to be independent of oxygen levels within tumors. It has been challenging to meaningfully compare these two modalities due to differences in contrast agents and irradiation parameters, and no comparative in vivo studies have been performed until now. Here, by making use of recently developed nanostructured self-quenched porphysome nanoparticles, we were able to directly compare PDT and PTT using matched light doses and matched porphyrin photosensitizer doses (with the photosensitizer being effective for either PTT or PDT based on the existence of nanostructure or not). Therefore, we demonstrated the nanostructure-driven conversion from the PDT singlet oxy...

354 citations

Journal ArticleDOI
TL;DR: This work shows the conversion of microbubbles to nanoparticles using low-frequency ultrasound and shows that this conversion is possible in tumour-bearing mice and could be validated using photoacoustic imaging.
Abstract: Converting nanoparticles or monomeric compounds into larger supramolecular structures by endogenous or external stimuli is increasingly popular because these materials are useful for imaging and treating diseases. However, conversion of microstructures to nanostructures is less common. Here, we show the conversion of microbubbles to nanoparticles using low-frequency ultrasound. The microbubble consists of a bacteriochlorophyll-lipid shell around a perfluoropropane gas. The encapsulated gas provides ultrasound imaging contrast and the porphyrins in the shell confer photoacoustic and fluorescent properties. On exposure to ultrasound, the microbubbles burst and form smaller nanoparticles that possess the same optical properties as the original microbubble. We show that this conversion is possible in tumour-bearing mice and could be validated using photoacoustic imaging. With this conversion, our microbubble can potentially be used to bypass the enhanced permeability and retention effect when delivering drugs to tumours.

295 citations

Journal ArticleDOI
06 Apr 2015-ACS Nano
TL;DR: PLP offers a biomimetic theranostic nanoplatform for pretreatment stratification using PET and NIR fluorescence imaging and for further customized cancer management via imaging-guided surgery, PDT, or/and potential chemotherapy.
Abstract: PEGylation (PEG) is the most commonly adopted strategy to prolong nanoparticles’ vascular circulation by mitigating the reticuloendothelial system uptake. However, there remain many concerns in regards to its immunogenicity, targeting efficiency, etc., which inspires pursuit of alternate, non-PEGylated systems. We introduced here a PEG-free, porphyrin-based ultrasmall nanostructure mimicking nature lipoproteins, termed PLP, that integrates multiple imaging and therapeutic functionalities, including positron emission tomography (PET) imaging, near-infrared (NIR) fluorescence imaging and photodynamic therapy (PDT). With an engineered lipoprotein-mimicking structure, PLP is highly stable in the blood circulation, resulting in favorable pharmacokinetics and biodistribution without the need of PEG. The prompt tumor intracellular trafficking of PLP allows for rapid nanostructure dissociation upon tumor accumulation to release monomeric porphyrins to efficiently generate fluorescence and photodynamic reactivity,...

147 citations

Journal ArticleDOI
TL;DR: In both in vitro and in vivo studies, folate‐porphysomes can achieve folate receptor‐selective PDT efficacy, which proves the robustness of targeting‐triggered PDT activation of porphysome nanostructure for highly selective tumor ablation.
Abstract: Photodynamic therapy (PDT) and photothermal therapy (PTT) possess advantages over the conventional therapies with additional treatment selectivity achieved with local laser irradiation. Comparing to PTT that ablates target tissue via thermal necrosis, PDT induces target cell death via singlet oxygen without damaging the underling connective tissue, thus preserving its biological function. Activatable photosensitizers provide an additional level of treatment selectivity via the disease-associated activation mechanism. In this study, folate-conjugated porphysomes are introduced as targeting-triggered activatable nano-sized beacons for PDT. Porphysomes are reported previously as the most stable and efficient delivery system of porphyrin, but their nanostructure converts the singlet oxygen generation mechanism to thermal ablation mechanism. By folate-receptor-mediated endocytosis, folate-porphysomes are internalized into cells rapidly and resulted in efficient disruption of nanostructures, thus switching back on the photodynamic activity of the densely packed porphyrins for effective PDT. In both in vitro and in vivo studies, folate-porphysomes can achieve folate receptor-selective PDT efficacy, which proves the robustness of targeting-triggered PDT activation of porphysome nanostructure for highly selective tumor ablation. The formulation of porphysomes can be modified with other targeting ligands as activatable photosensitizers for personalized treatment in future.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Abstract: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?’

3,335 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling study of the response of the immune system to chemotherapy and its applications in the context of central nervous system disorders.
Abstract: Sasidharan Swarnalatha Lucky,†,§ Khee Chee Soo,‡ and Yong Zhang*,†,§,∥ †NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456 ‡Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore 169610 Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576 College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, P. R. China 321004

2,194 citations

Journal ArticleDOI

1,989 citations

Journal ArticleDOI
TL;DR: It is believed that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve the ability to combat cancers.
Abstract: The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.

1,721 citations

Journal ArticleDOI
TL;DR: Benefitting from their naturally wide distribution in humans, dopamine-melanin colloidal nanospheres exhibit robust biocompatibility and biodegradability, and can efficiently damage tumors at low power density and short irradiation time without damaging healthy tissues.
Abstract: A new generation of photothermal therapeutic agents based on biopolymer dopamine-melanin colloidal nanospheres is described. Benefitting from their naturally wide distribution in humans, dopamine-melanin colloidal nanospheres exhibit robust biocompatibility and biodegradability, and provide up to 40% photothermal conversion efficiency. After administration, they can efficiently damage tumors at low power density and short irradiation time without damaging healthy tissues.

1,604 citations