scispace - formally typeset
Search or ask a question
Author

Cheng-Ta Huang

Bio: Cheng-Ta Huang is an academic researcher from Oriental Institute of Technology. The author has contributed to research in topics: Information hiding & Vector quantization. The author has an hindex of 12, co-authored 44 publications receiving 649 citations. Previous affiliations of Cheng-Ta Huang include National Pingtung University of Education & National Central University.


Papers
More filters
Journal ArticleDOI
TL;DR: Based on the quantitative evaluation results, it is believed automatic dental radiography analysis is still a challenging and unsolved problem and the datasets and the evaluation software are made available to the research community, further encouraging future developments in this field.

246 citations

Journal ArticleDOI
TL;DR: Evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.
Abstract: Cephalometric analysis is an essential clinical and research tool in orthodontics for the orthodontic analysis and treatment planning. This paper presents the evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE International Symposium on Biomedical Imaging 2014 with an on-site competition. The challenge was set to explore and compare automatic landmark detection methods in application to cephalometric X-ray images. Methods were evaluated on a common database including cephalograms of 300 patients aged six to 60 years, collected from the Dental Department, Tri-Service General Hospital, Taiwan, and manually marked anatomical landmarks as the ground truth data, generated by two experienced medical doctors. Quantitative evaluation was performed to compare the results of a representative selection of current methods submitted to the challenge. Experimental results show that three methods are able to achieve detection rates greater than 80% using the 4 mm precision range, but only one method achieves a detection rate greater than 70% using the 2 mm precision range, which is the acceptable precision range in clinical practice. The study provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.

136 citations

Journal ArticleDOI
TL;DR: The FALA system rapidly and accurately locates and analyses cephalometric landmarks in lateral cephalograms, and has the potential to significantly improve the clinical work flow in orthodontic treatment.
Abstract: Cephalometric tracing is a standard analysis tool for orthodontic diagnosis and treatment planning. The aim of this study was to develop and validate a fully automatic landmark annotation (FALA) system for finding cephalometric landmarks in lateral cephalograms and its application to the classification of skeletal malformations. Digital cephalograms of 400 subjects (age range: 7–76 years) were available. All cephalograms had been manually traced by two experienced orthodontists with 19 cephalometric landmarks, and eight clinical parameters had been calculated for each subject. A FALA system to locate the 19 landmarks in lateral cephalograms was developed. The system was evaluated via comparison to the manual tracings, and the automatically located landmarks were used for classification of the clinical parameters. The system achieved an average point-to-point error of 1.2 mm, and 84.7% of landmarks were located within the clinically accepted precision range of 2.0 mm. The automatic landmark localisation performance was within the inter-observer variability between two clinical experts. The automatic classification achieved an average classification accuracy of 83.4% which was comparable to an experienced orthodontist. The FALA system rapidly and accurately locates and analyses cephalometric landmarks in lateral cephalograms, and has the potential to significantly improve the clinical work flow in orthodontic treatment.

132 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed watermarking method possesses great robustness against various single and combined attacks.

73 citations

Journal ArticleDOI
TL;DR: It is shown that an irreversible method is very likely a VQ-based data-hiding method that produces a stego-image as its output, and it can embed more secret data than a reversible method.
Abstract: Data hiding is one of the most important techniques to achieve better data and communication protection by hiding information into a media carrier. It provides a secure method to distribute data through a public and open channel. Data hiding for vector quantization (VQ)-based images focuses on the problem of embedding secret data into a cover VQ-based image to achieve secret communication and data protection. This paper provides a state-of-the-art review and comparison of the different existing data-hiding methods for VQ-based images. In this paper, we classify VQ-based data-hiding methods into four nonoverlapping groups according to their reversibility and output formats, introduce the details of the representative methods, summarize the features of the representative methods, and compare the performance of the representative methods using peak signal-to-noise ratio, capacity of secret data, and bit rate. Our paper shows that an irreversible method is very likely a VQ-based data-hiding method that produces a stego-image as its output, and it can embed more secret data than a reversible method. Nonstandard encoding methods (e.g., joint neighboring coding) are becoming popular in reversible data hiding since they can increase the capacity for embedding the secret data. Some methods with high compression rate, such as the search order coding-based methods, may reduce the compression rate in return for the capacity for the secret data.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This review covers computer-assisted analysis of images in the field of medical imaging and introduces the fundamentals of deep learning methods and their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on.
Abstract: This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

2,653 citations

25 Apr 2017
TL;DR: This presentation is a case study taken from the travel and holiday industry and describes the effectiveness of various techniques as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib).
Abstract: This presentation is a case study taken from the travel and holiday industry. Paxport/Multicom, based in UK and Sweden, have recently adopted a recommendation system for holiday accommodation bookings. Machine learning techniques such as Collaborative Filtering have been applied using Python (3.5.1), with Jupyter (4.0.6) as the main framework. Data scale and sparsity present significant challenges in the case study, and so the effectiveness of various techniques are described as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib). The presentation is suitable for all levels of programmers.

1,338 citations

Proceedings ArticleDOI
01 Dec 2016
TL;DR: It is shown that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficientDenoising of medical images.
Abstract: Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These methods are however limited for requirement of large training sample size and high computational costs. In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images. Heterogeneous images can be combined to boost sample size for increased denoising performance. Simplest of networks can reconstruct images with corruption levels so high that noise and signal are not differentiable to human eye.

488 citations

Journal ArticleDOI
TL;DR: This work proposed the first deep learning‐based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state‐of‐the‐art automated segmentation algorithms, commercial software, and interobserver variability.
Abstract: Purpose Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state-of-the-art automated segmentation algorithms, commercial software, and interobserver variability. Methods Convolutional neural networks (CNNs)—a concept from the field of deep learning—were used to study consistent intensity patterns of OARs from training CT images and to segment the OAR in a previously unseen test CT image. For CNN training, we extracted a representative number of positive intensity patches around voxels that belong to the OAR of interest in training CT images, and negative intensity patches around voxels that belong to the surrounding structures. These patches then passed through a sequence of CNN layers that captured local image features such as corners, end-points, and edges, and combined them into more complex high-order features that can efficiently describe the OAR. The trained network was applied to classify voxels in a region of interest in the test image where the corresponding OAR is expected to be located. We then smoothed the obtained classification results by using Markov random fields algorithm. We finally extracted the largest connected component of the smoothed voxels classified as the OAR by CNN, performed dilate–erode operations to remove cavities of the component, which resulted in segmentation of the OAR in the test image. Results The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves, and optic chiasm using 50 CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and commercial software reported in the literature, and observed that CNNs demonstrate similar or superior performance on segmentation of spinal cord, mandible, parotid glands, larynx, pharynx, eye globes, and optic nerves, but inferior performance on segmentation of submandibular glands and optic chiasm. Conclusion We concluded that convolution neural networks can accurately segment most of OARs using a representative database of 50 HaN CT images. At the same time, inclusion of additional information, for example, MR images, may be beneficial to some OARs with poorly visible boundaries.

403 citations