scispace - formally typeset
Search or ask a question
Author

Chengmei Zhong

Bio: Chengmei Zhong is an academic researcher from South China University of Technology. The author has contributed to research in topics: Polymer solar cell & Organic solar cell. The author has an hindex of 32, co-authored 56 publications receiving 9305 citations. Previous affiliations of Chengmei Zhong include University of California, Santa Barbara & Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors showed that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) and gold (w ¼ 5.2 eV).
Abstract: typically based on n-type metal oxides, our device is solutionprocessed at room temperature, enabling easy processibility over a large area. Accordingly, the approach is fully amenable to highthroughput roll-to-roll manufacturing techniques, may be used to fabricate vacuum-deposition-free PSCs of large area, and find practical applications in future mass production. Moreover, our discovery overturns a well-accepted belief (the inferior performance of inverted PSCs) and clearly shows that the characteristics of high performance, improved stability and ease of use can be integrated into a single device, as long as the devices are optimized, both optically and electrically, by means of a meticulously designed device structure. We also anticipate that our findings will catalyse the development of new device structures and may move the efficiency of devices towards the goal of 10% for various material systems. Previously, we reported that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) 22,23 and has thus been used to realize high-efficiency, air-stable PLEDs 24 . Furthermore, we also found that efficient electron injection can be obtained even in the most noble metals with extremely high work functions, such as gold (w ¼ 5.2 eV), by lowering the effective work function (for example lowering w in gold by 1.0 eV), which has previously been ascribed to the formation of a strong interface dipole 25 .

3,651 citations

Journal ArticleDOI
TL;DR: Simultaneous enhancement of open-circuit voltage, short-circuits current density, and fill factor in highly efficient polymer solar cells by incorporating an alcohol/water-soluble conjugated polymer as cathode interlayer is domonstrated.
Abstract: Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in highly efficient polymer solar cells by incorporating an alcohol/water-soluble conjugated polymer as cathode interlayer is domonstrated. When combined with a low-bandgap polymer PTB7 as the electron donor material, the power efficiency of the devices is improved to a certified 8.370%. Due to the drastic improvement in efficiency and easy utilization, this method opens new opportunities for PSCs from various material systems to improve towards 10% efficiency.

2,019 citations

Journal ArticleDOI
TL;DR: A novel perylene bisimide (PBI) acceptor, SdiPBI-Se, in which selenium atoms were introduced into the perylene core, suggesting that non-fullerene acceptors have enormous potential to rival or even surpass the performance of their fullerene counterparts.
Abstract: Non-fullerene acceptors have recently attracted tremendous interest because of their potential as alternatives to fullerene derivatives in bulk heterojunction organic solar cells. However, the power conversion efficiencies (PCEs) have lagged far behind those of the polymer/fullerene system, mainly because of the low fill factor (FF) and photocurrent. Here we report a novel perylene bisimide (PBI) acceptor, SdiPBI-Se, in which selenium atoms were introduced into the perylene core. With a well-established wide-band-gap polymer (PDBT-T1) as the donor, a high efficiency of 8.4% with an unprecedented high FF of 70.2% is achieved for solution-processed non-fullerene organic solar cells. Efficient photon absorption, high and balanced charge carrier mobility, and ultrafast charge generation processes in PDBT-T1:SdiPBI-Se films account for the high photovoltaic performance. Our results suggest that non-fullerene acceptors have enormous potential to rival or even surpass the performance of their fullerene counterparts.

622 citations

Journal ArticleDOI
TL;DR: An overview of recent developments in WSCPs and WSCSs, including their molecular design, material synthesis, functional principles and application as interface modification layers and photoactive components in emerging photovoltaic technologies such as organic/polymer solar cells, organic-inorganic hybrid solar cells and dye-sensitised solar cells are given.
Abstract: Water/alcohol-soluble conjugated polymers (WSCPs) and small molecules (WSCSs) are materials that can be processed from water or other polar solvents. They provide good opportunities to fabricate multilayer organic optoelectronic devices without interface mixing by solution processing, and exhibit a promising interface modification ability for metal or metal oxide electrodes to greatly enhance the device performance of solar cells. Moreover, owing to their intriguing processability, WSCPs and WSCSs have great potential for applying environmentally friendly processing technologies to fabricate solar cells. In this review, the authors give an overview of recent developments in WSCPs and WSCSs, including their molecular design, material synthesis, functional principles and application as interface modification layers and photoactive components in emerging photovoltaic technologies such as organic/polymer solar cells, organic–inorganic hybrid solar cells and dye-sensitised solar cells.

425 citations

Journal ArticleDOI
TL;DR: In this article, a roll-to-roll organic light-emitting diodes (OLEDs) were developed for large area flexible displays and white lighting panels, which can potentially be made entirely by solution process and thus are more suitable for low-cost, large-area flexible displays.
Abstract: Organic light-emitting diodes (OLEDs) have been successfully developed and have now entered the commercial marketplace. Besides the impressive performance as displays, one of the key advantages of OLEDs is that they can potentially be made entirely by solution process and thus are more suitable for low cost, large area flexible displays and white lighting panels. To realize this, many efforts have been devoted on the development of solution processable light-emitting materials and charge transporting materials as well as electrode materials, which have resulted in the successful demonstration of high performance fully solution processed OLEDs and have opened a way to achieve all printable roll-to-roll organic optoelectronic devices.

403 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) and gold (w ¼ 5.2 eV).
Abstract: typically based on n-type metal oxides, our device is solutionprocessed at room temperature, enabling easy processibility over a large area. Accordingly, the approach is fully amenable to highthroughput roll-to-roll manufacturing techniques, may be used to fabricate vacuum-deposition-free PSCs of large area, and find practical applications in future mass production. Moreover, our discovery overturns a well-accepted belief (the inferior performance of inverted PSCs) and clearly shows that the characteristics of high performance, improved stability and ease of use can be integrated into a single device, as long as the devices are optimized, both optically and electrically, by means of a meticulously designed device structure. We also anticipate that our findings will catalyse the development of new device structures and may move the efficiency of devices towards the goal of 10% for various material systems. Previously, we reported that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) 22,23 and has thus been used to realize high-efficiency, air-stable PLEDs 24 . Furthermore, we also found that efficient electron injection can be obtained even in the most noble metals with extremely high work functions, such as gold (w ¼ 5.2 eV), by lowering the effective work function (for example lowering w in gold by 1.0 eV), which has previously been ascribed to the formation of a strong interface dipole 25 .

3,651 citations

Journal ArticleDOI
17 Apr 2019-Joule
TL;DR: In this paper, a ladder-type electron-deficient core-based central fused ring (Dithienothiophen[3.2-b]- pyrrolobenzothiadiazole) with a benzothiadiadiazoles (BT) core was proposed to fine-tune its absorption and electron affinity.

3,513 citations