scispace - formally typeset
Search or ask a question
Author

Chenguang Yang

Bio: Chenguang Yang is an academic researcher from South China University of Technology. The author has contributed to research in topics: Robot & Adaptive control. The author has an hindex of 56, co-authored 340 publications receiving 9803 citations. Previous affiliations of Chenguang Yang include Swansea University & University of Plymouth.


Papers
More filters
Journal ArticleDOI
TL;DR: The trajectory tracking problem for a fully actuated autonomous underwater vehicle (AUV) that moves in the horizontal plane is investigated and two neural networks, including a critic and an action NN, are integrated into the adaptive control design.
Abstract: In this paper, we investigate the trajectory tracking problem for a fully actuated autonomous underwater vehicle (AUV) that moves in the horizontal plane. External disturbances, control input nonlinearities and model uncertainties are considered in our control design. Based on the dynamics model derived in the discrete-time domain, two neural networks (NNs), including a critic and an action NN, are integrated into our adaptive control design. The critic NN is introduced to evaluate the long-time performance of the designed control in the current time step, and the action NN is used to compensate for the unknown dynamics. To eliminate the AUV’s control input nonlinearities, a compensation item is also designed in the adaptive control. Rigorous theoretical analysis is performed to prove the stability and performance of the proposed control law. Moreover, the robustness and effectiveness of the proposed control method are tested and validated through extensive numerical simulation results.

370 citations

Journal ArticleDOI
TL;DR: Simulations show that this novel human-like learning controller is a good model of human motor adaptation and can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin.
Abstract: This paper presents a novel human-like learning controller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning controllers, the new controller can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin. Simulations show that this controller is a good model of human motor adaptation. Robotic implementations further demonstrate its capabilities to optimally adapt interaction with dynamic environments and humans in joint torque controlled robots and variable impedance actuators, without requiring interaction force sensing.

345 citations

Journal ArticleDOI
TL;DR: In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design and effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot.
Abstract: Robots with coordinated dual arms are able to perform more complicated tasks that a single manipulator could hardly achieve. However, more rigorous motion precision is required to guarantee effective cooperation between the dual arms, especially when they grasp a common object. In this case, the internal forces applied on the object must also be considered in addition to the external forces. Therefore, a prescribed tracking performance at both transient and steady states is first specified, and then, a controller is synthesized to rigorously guarantee the specified motion performance. In the presence of unknown dynamics of both the robot arms and the manipulated object, the neural network approximation technique is employed to compensate for uncertainties. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design. Effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot.

342 citations

Journal ArticleDOI
TL;DR: Inspired by human control strategy of inverted pendulum, the tilt angular motion in the passive subsystem Σb has been indirectly controlled using the dynamic coupling with planar forward motion of subsystemΣa, such that the satisfactory tracking of set tilt angle can be guaranteed.
Abstract: In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

323 citations

Journal ArticleDOI
TL;DR: A robot control/identification scheme to identify the unknown robot kinematic and dynamic parameters with enhanced convergence rate was developed, and the information of parameter estimation error was properly integrated into the proposed identification algorithm, such that enhanced estimation performance was achieved.
Abstract: For parameter identifications of robot systems, most existing works have focused on the estimation veracity, but few works of literature are concerned with the convergence speed. In this paper, we developed a robot control/identification scheme to identify the unknown robot kinematic and dynamic parameters with enhanced convergence rate. Superior to the traditional methods, the information of parameter estimation error was properly integrated into the proposed identification algorithm, such that enhanced estimation performance was achieved. Besides, the Newton–Euler (NE) method was used to build the robot dynamic model, where a singular value decomposition-based model reduction method was designed to remedy the potential singularity problems of the NE regressor. Moreover, an interval excitation condition was employed to relax the requirement of persistent excitation condition for the kinematic estimation. By using the Lyapunov synthesis, explicit analysis of the convergence rate of the tracking errors and the estimated parameters were performed. Simulation studies were conducted to show the accurate and fast convergence of the proposed finite-time (FT) identification algorithm based on a 7-DOF arm of Baxter robot.

321 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Proceedings Article
01 Jan 1989
TL;DR: A scheme is developed for classifying the types of motion perceived by a humanlike robot and equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented.
Abstract: A scheme is developed for classifying the types of motion perceived by a humanlike robot. It is assumed that the robot receives visual images of the scene using a perspective system model. Equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented. >

2,000 citations

Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations