scispace - formally typeset
Search or ask a question
Author

Chengxiang Qiu

Bio: Chengxiang Qiu is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Kidney disease & Genome-wide association study. The author has an hindex of 25, co-authored 46 publications receiving 4171 citations. Previous affiliations of Chengxiang Qiu include Peking University & Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: The Human microRNA Disease Database (HMDD) v2.0 update presented several novel options for users to facilitate exploration of the data in the database, and presented more data that were generated based on concepts derived from the miRNA–disease association data, including disease spectrum width of miRNAs and miRNA spectrumwidth of human diseases.
Abstract: The Human microRNA Disease Database (HMDD; available via the Web site at http://cmbi.bjmu.edu.cn/hmdd and http://202.38.126.151/hmdd/tools/hmdd2.html) is a collection of experimentally supported human microRNA (miRNA) and disease associations. Here, we describe the HMDD v2.0 update that presented several novel options for users to facilitate exploration of the data in the database. In the updated database, miRNA-disease association data were annotated in more details. For example, miRNA-disease association data from genetics, epigenetics, circulating miRNAs and miRNA-target interactions were integrated into the database. In addition, HMDD v2.0 presented more data that were generated based on concepts derived from the miRNA-disease association data, including disease spectrum width of miRNAs and miRNA spectrum width of human diseases. Moreover, we provided users a link to download all the data in the HMDD v2.0 and a link to submit novel data into the database. Meanwhile, we also maintained the old version of HMDD. By keeping data sets up-to-date, HMDD should continue to serve as a valuable resource for investigating the roles of miRNAs in human disease.

944 citations

Journal ArticleDOI
TL;DR: The LncRNADisease database is described, which collected and curated approximately 480 entries of experimentally supported lncRNA–disease associations, including 166 diseases, and developed a bioinformatic method to predict novel lnc RNA–dISEase associations.
Abstract: In this article, we describe a long-non-coding RNA (lncRNA) and disease association database (LncRNADisease), which is publicly accessible at http://cmbi.bjmu.edu.cn/lncrnadisease. In recent years, a large number of lncRNAs have been identified and increasing evidence shows that lncRNAs play critical roles in various biological processes. Therefore, the dysfunctions of lncRNAs are associated with a wide range of diseases. It thus becomes important to understand lncRNAs’ roles in diseases and to identify candidate lncRNAs for disease diagnosis, treatment and prognosis. For this purpose, a high-quality lncRNA–disease association database would be extremely beneficial. Here, we describe the LncRNADisease database that collected and curated approximately 480 entries of experimentally supported lncRNA–disease associations, including 166 diseases. LncRNADisease also curated 478 entries of lncRNA interacting partners at various molecular levels, including protein, RNA, miRNA and DNA. Moreover, we annotated lncRNA–disease associations with genomic information, sequences, references and species. We normalized the disease name and the type of lncRNA dysfunction and provided a detailed description for each entry. Finally, we developed a bioinformatic method to predict novel lncRNA–disease associations and integrated the method and the predicted associated diseases of 1564 human lncRNAs into the database.

821 citations

Journal ArticleDOI
18 May 2018-Science
TL;DR: It is inferred that inherited kidney diseases that arise from distinct genetic mutations but share the same phenotypic manifestation originate from the same differentiated cell type, and that the collecting duct in kidneys of adult mice generates a spectrum of cell types through a newly identified transitional cell.
Abstract: Our understanding of kidney disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ’s multiple homeostatic functions. To help fill this knowledge gap, we characterized 57,979 cells from healthy mouse kidneys by using unbiased single-cell RNA sequencing. On the basis of gene expression patterns, we infer that inherited kidney diseases that arise from distinct genetic mutations but share the same phenotypic manifestation originate from the same differentiated cell type. We also found that the collecting duct in kidneys of adult mice generates a spectrum of cell types through a newly identified transitional cell. Computational cell trajectory analysis and in vivo lineage tracing revealed that intercalated cells and principal cells undergo transitions mediated by the Notch signaling pathway. In mouse and human kidney disease, these transitions were shifted toward a principal cell fate and were associated with metabolic acidosis.

751 citations

Journal ArticleDOI
TL;DR: This study manually surveyed approximately 5000 reports in the literature and identified 243 TF–miRNA regulatory relationships, which were supported experimentally from 86 publications and used to build a TF-miRNAs–TFs regulatory database (TransmiR, http://cmbi.bjmu.edu.cn/transmir), which contains 82 TFs and 100 miRNAs.
Abstract: MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are therefore important cellular components. As is true for protein-coding genes, the transcription of miRNAs is regulated by transcription factors (TFs), an important class of gene regulators that act at the transcriptional level. The correct regulation of miRNAs by TFs is critical, and increasing evidence indicates that aberrant regulation of miRNAs by TFs can cause phenotypic variations and diseases. Therefore, a TF–miRNA regulation database would be helpful for understanding the mechanisms by which TFs regulate miRNAs and understanding their contribution to diseases. In this study, we manually surveyed approximately 5000 reports in the literature and identified 243 TF–miRNA regulatory relationships, which were supported experimentally from 86 publications. We used these data to build a TF–miRNA regulatory database (TransmiR, http://cmbi.bjmu.edu.cn/transmir), which contains 82 TFs and 100 miRNAs with 243 regulatory pairs between TFs and miRNAs. In addition, we included references to the published literature (PubMed ID) information about the organism in which the relationship was found, whether the TFs and miRNAs are involved with tumors, miRNA function annotation and miRNA-associated disease annotation. TransmiR provides a user-friendly interface by which interested parties can easily retrieve TF–miRNA regulatory pairs by searching for either a miRNA or a TF.

385 citations

Journal ArticleDOI
Ayush Giri1, Jacklyn N. Hellwege2, Jacob M. Keaton1, Jacob M. Keaton2, Jihwan Park3, Chengxiang Qiu3, Helen R. Warren4, Helen R. Warren5, Eric S. Torstenson2, Eric S. Torstenson1, Csaba P. Kovesdy6, Yan V. Sun7, Otis D. Wilson2, Otis D. Wilson1, Cassianne Robinson-Cohen1, Christianne L. Roumie1, Cecilia P. Chung1, K A Birdwell1, K A Birdwell6, Scott M. Damrauer6, Scott L. DuVall, Derek Klarin, Kelly Cho8, Yu Wang1, Evangelos Evangelou9, Evangelos Evangelou10, Claudia P. Cabrera4, Claudia P. Cabrera5, Louise V. Wain4, Louise V. Wain11, Rojesh Shrestha3, Brian S. Mautz1, Elvis A. Akwo1, Muralidharan Sargurupremraj12, Stéphanie Debette12, Michael Boehnke13, Laura J. Scott13, Jian'an Luan14, Zhao J-H.14, Sara M. Willems14, Sébastien Thériault15, Nabi Shah16, Nabi Shah17, Christopher Oldmeadow18, Peter Almgren19, Ruifang Li-Gao20, Niek Verweij21, Thibaud Boutin22, Massimo Mangino23, Massimo Mangino24, Ioanna Ntalla5, Elena V. Feofanova25, Praveen Surendran14, James P. Cook26, Savita Karthikeyan14, Najim Lahrouchi27, Ching-Ti Liu28, Nuno Sepúlveda29, Tom G. Richardson30, Aldi T. Kraja31, Philippe Amouyel32, Martin Farrall33, Neil Poulter10, Markku Laakso34, Eleftheria Zeggini35, Peter S. Sever36, Robert A. Scott14, Claudia Langenberg14, Nicholas J. Wareham14, David Conen37, Palmer Cna.16, John Attia18, Daniel I. Chasman38, Paul M. Ridker38, Olle Melander19, Dennis O. Mook-Kanamori20, Harst Pvd.21, Francesco Cucca39, David Schlessinger36, Caroline Hayward22, Tim D. Spector23, Jarvelin M-R.1, Branwen J. Hennig40, Branwen J. Hennig29, Nicholas J. Timpson30, Wei W-Q.1, J C Smith1, Yaomin Xu1, Michael E. Matheny, E E Siew1, C M Lindgren27, C M Lindgren33, C M Lindgren41, Herzig K-H., George Dedoussis42, Josh C. Denny1, Bruce M. Psaty43, Howson Jmm.14, Patricia B. Munroe5, Patricia B. Munroe4, Christopher Newton-Cheh44, Mark J. Caulfield4, Mark J. Caulfield5, Paul Elliott10, Paul Elliott4, J M Gaziano45, J M Gaziano46, John Concato, Wilson Pwf.6, Philip S. Tsao45, D.R. Velez Edwards2, D.R. Velez Edwards1, Katalin Susztak3, Christopher J. O'Donnell38, Adriana M. Hung2, Adriana M. Hung1, Todd L. Edwards1, Todd L. Edwards2 
TL;DR: Analysis of blood pressure data from the Million Veteran Program trans-ethnic cohort identifies common and rare variants, and genetically predicted gene expression across multiple tissues associated with systolic, diastolic and pulse pressure in over 775,000 individuals.
Abstract: In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.

310 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascul...
Abstract: Background: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascul...

3,034 citations

Journal ArticleDOI
TL;DR: A connectivity-based parcellation framework is designed that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture and provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections.
Abstract: The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states.

1,717 citations

Journal ArticleDOI
TL;DR: Improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.

1,517 citations

Journal ArticleDOI
TL;DR: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update as discussed by the authors .
Abstract: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs).The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy.Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics.The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.

1,483 citations