scispace - formally typeset
Search or ask a question
Author

Chenming Hu

Other affiliations: Motorola, National Chiao Tung University, Semtech  ...read more
Bio: Chenming Hu is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: MOSFET & Gate oxide. The author has an hindex of 119, co-authored 1296 publications receiving 57264 citations. Previous affiliations of Chenming Hu include Motorola & National Chiao Tung University.
Topics: MOSFET, Gate oxide, CMOS, Gate dielectric, Transistor


Papers
More filters
Patent
07 Apr 1994
TL;DR: In this paper, a low barrier body contact under the source region, and alternatively under the drain region, to facilitate collection and removal of current carriers generated by impact ionization is provided.
Abstract: An SOI MOSFET having improved electrical characteristics includes a low barrier body contact under the source region, and alternatively under the drain region, to facilitate collection and removal of current carriers generated by impact ionization. Fully-depleted and non-fully-depleted SOI MOSFETs can be integrated on the same chip by providing some transistors with thicker source and drain regions with a recessed channel therebetween and by selective channel dopant implant. Accordingly, digital circuitry and analog circuitry can be combined on one substrate. Improved electrostatic discharge protection is provided by fabricating transistors for the protection circuit directly in the supporting substrate by first removing the silicon thin film and underlying insulation barrier. Alternatively, improved transistors for electrostatic discharge protection can be formed in the silicon film by fabricating the transistor in a plurality of electrically isolated segments, each segment having source and drain regions separated by a channel region with the regions being electrically interconnected with like regions in other segments. Increased ESD current can be realized as compared to the ESD current for a wider unsegmented device.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report subthreshold swings as low as 8.5 mV/decade over as high as eight orders of magnitude of drain current in short-channel negative capacitance FinFETs with gate length $L_{g}=100$ nm.
Abstract: We report subthreshold swings as low as 8.5 mV/decade over as high as eight orders of magnitude of drain current in short-channel negative capacitance FinFETs (NC-FinFETs) with gate length $L_{g}=100$ nm. NC-FinFETs are constructed by connecting a high-quality epitaxial bismuth ferrite (BiFeO3) ferroelectric capacitor to the gate terminal of both n-type and p-type FinFETs. We show that a self-consistent simulation scheme based on Berkeley SPICE Insulated-Gate-FET Model:Common Multi Gate model and Landau–Devonshire formalism could quantitatively match the experimental NC-FinFET transfer characteristics. This also allows a general procedure to extract the effective $S$ -shaped ferroelectric charge–voltage characteristics that provides important insights into the device operation.

206 citations

Proceedings ArticleDOI
01 Dec 2000
TL;DR: In this article, an analytical intrinsic gate leakage model for MOSFET with physical source/drain current partition is developed, which has been implemented in BSIM4 and BSIM3.
Abstract: Gate dielectric leakage current becomes a serious concern as sub-20 /spl Aring/ gate oxide prevails in advanced CMOS processes Oxide this thin can conduct significant leakage current by various direct-tunneling mechanisms and degrade circuit performance While the gate leakage current of MOS capacitors has been much studied, little has been reported on compact MOSFET modeling with gate leakage In this work, an analytical intrinsic gate leakage model for MOSFET with physical source/drain current partition is developed This model has been implemented in BSIM4

205 citations

Journal ArticleDOI
TL;DR: Berkeley reliability tools (BERT) simulates the circuit degradation (drift) due to hot-electron degradation in MOSFETs and bipolar transistors and predicts circuit failure rates due to oxide breakdown and electromigration in CMOS, bipolar, and BiCMOS circuits.
Abstract: Berkeley reliability tools (BERT) simulates the circuit degradation (drift) due to hot-electron degradation in MOSFETs and bipolar transistors and predicts circuit failure rates due to oxide breakdown and electromigration in CMOS, bipolar, and BiCMOS circuits. With the increasing importance of reliability in today's and future technology, a reliability simulator such as this is expected to serve as the engine of design-for-reliability in a building-in-reliability paradigm. BERT works in conjunction with a circuit simulator such as SPICE in order to simulate reliability for actual circuits, and, like SPICE, acts as an interactive tool for design. BERT is introduced and the current work being done is summarized. BERT is used to study the reliability of a BiCMOS inverter chain, and performance data are presented. >

202 citations

Journal ArticleDOI
TL;DR: In this paper, a 40nm-gate-length ultrathin-body (UTB) nMOSFET is presented with 20-nm body thickness and 2.4-nm gate oxide.
Abstract: A 40-nm-gate-length ultrathin-body (UTB) nMOSFET is presented with 20-nm body thickness and 2.4-nm gate oxide. The UTB structure eliminates leakage paths and is an extension of a conventional SOI MOSFET for deep-sub-tenth micron CMOS. Simulation shows that the UTB SOI MOSFET can be scaled down to 18-nm gate length with <5 nm UTB. A raised poly-Si S/D process is employed to reduce the parasitic series resistance.

202 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Book
01 Jan 1999
TL;DR: The analysis and design techniques of CMOS integrated circuits that practicing engineers need to master to succeed can be found in this article, where the authors describe the thought process behind each circuit topology, but also consider the rationale behind each modification.
Abstract: The CMOS technology area has quickly grown, calling for a new text--and here it is, covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems, the book not only describes the thought process behind each circuit topology, but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies. Table of contents 1 Introduction to Analog Design 2 Basic MOS Device Physics 3 Single-Stage Amplifiers 4 Differential Amplifiers 5 Passive and Active Current Mirrors 6 Frequency Response of Amplifiers 7 Noise 8 Feedback 9 Operational Amplifiers 10 Stability and Frequency Compensation 11 Bandgap References 12 Introduction to Switched-Capacitor Circuits 13 Nonlinearity and Mismatch 14 Oscillators 15 Phase-Locked Loops 16 Short-Channel Effects and Device Models 17 CMOS Processing Technology 18 Layout and Packaging

4,826 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations