scispace - formally typeset
Search or ask a question
Author

Chenming Hu

Other affiliations: Motorola, National Chiao Tung University, Semtech  ...read more
Bio: Chenming Hu is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: MOSFET & Gate oxide. The author has an hindex of 119, co-authored 1296 publications receiving 57264 citations. Previous affiliations of Chenming Hu include Motorola & National Chiao Tung University.
Topics: MOSFET, Gate oxide, CMOS, Gate dielectric, Transistor


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of Damascene and metal RIE lines and found that the Damascenes exhibit a long resistance incubation period followed by a rapid increase in resistance, while the RIE structures show a short resistency incubation and a gradual increase in resistence.

9 citations

Proceedings ArticleDOI
J. Chung1, M. Jeng1, J.E. Moon1, Ping Keung Ko1, Chenming Hu1 
11 Apr 1989
TL;DR: In this article, the maximum allowable power-supply voltage to insure a 10-yr device lifetime without using LDD (lightly doped drains) was determined as a function of channel length and oxide thickness.
Abstract: Hot-electron degradation in deep-submicrometer MOSFETs at 3.3 V and below is studied. Using a device with L/sub eff/=0.1 mu m and T/sub ox/=75 AA, substrate current is measured at a drain bias as low as 0.7 V; gate current is measured at a drain bias as low as 1.75 V. Using the charge-pumping technique, hot-electron degradation is also observed at drain biases as low as 1.8 V. These voltages are believed to be the lowest reported values for which hot-electron currents and degradation have been directly observed. These low-voltage hot-electron phenomena exhibit similar behavior to hot-electron effects present at higher biases and longer channel lengths. No critical voltage for hot-electron effects (such as the Si-SiO/sub 2/ barrier height) is apparent. Established hot-electron degradation concepts and models are shown to be applicable in the low-voltage deep submicrometer regime. Using these established models, the maximum allowable power-supply voltage to insure a 10-yr device lifetime without using LDD (lightly doped drains) is determined as a function of channel length (down to 0.1 mu m) and oxide thickness. >

9 citations

23 Nov 2011
TL;DR: In this paper, a physical explanation of MOSFET intrinsic gate to drain capacitance (CGD) going negative due to Drain Induced Barrier Lowering (DIBL) effect is presented.
Abstract: This paper presents a physical explanation of MOSFET intrinsic gate to drain capacitance (CGD) going negative due to Drain Induced Barrier Lowering (DIBL) effect. For the sub-90nm MOS devices, DIBL effect may be dominant enough to guide CGD to negative if de-embedded from parallel extrinsic overlap, outer and inner fringing capacitances. The possibility of this phenomenon is evident from the results of our 2-D TCAD simulations of conventional bulk MOS structure. However negative capacitances lead to non-convergence issue in circuit simulators and need to be bounded in MOS devices compact models.

9 citations

Proceedings ArticleDOI
01 Sep 2013
TL;DR: A new model and a theory to capture the effects of halo (pocket) implants on the flicker noise of the advanced-node MOSFETs and the unexpected channel-length dependence of FN power density in strong-halo devices are proposed and verified.
Abstract: A new model and a theory to capture the effects of halo (pocket) implants on the flicker noise of the advanced-node MOSFETs have been proposed and verified with measurements. The model can accurately capture the bias dependence of the drain-current flicker-noise (FN) power density. Also for the first time, we explain and model the unexpected channel-length dependence of FN power density in strong-halo devices.

9 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Book
01 Jan 1999
TL;DR: The analysis and design techniques of CMOS integrated circuits that practicing engineers need to master to succeed can be found in this article, where the authors describe the thought process behind each circuit topology, but also consider the rationale behind each modification.
Abstract: The CMOS technology area has quickly grown, calling for a new text--and here it is, covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems, the book not only describes the thought process behind each circuit topology, but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies. Table of contents 1 Introduction to Analog Design 2 Basic MOS Device Physics 3 Single-Stage Amplifiers 4 Differential Amplifiers 5 Passive and Active Current Mirrors 6 Frequency Response of Amplifiers 7 Noise 8 Feedback 9 Operational Amplifiers 10 Stability and Frequency Compensation 11 Bandgap References 12 Introduction to Switched-Capacitor Circuits 13 Nonlinearity and Mismatch 14 Oscillators 15 Phase-Locked Loops 16 Short-Channel Effects and Device Models 17 CMOS Processing Technology 18 Layout and Packaging

4,826 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations