scispace - formally typeset
Search or ask a question
Author

Chenming Hu

Other affiliations: Motorola, National Chiao Tung University, Semtech  ...read more
Bio: Chenming Hu is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: MOSFET & Gate oxide. The author has an hindex of 119, co-authored 1296 publications receiving 57264 citations. Previous affiliations of Chenming Hu include Motorola & National Chiao Tung University.
Topics: MOSFET, Gate oxide, CMOS, Gate dielectric, Transistor


Papers
More filters
Proceedings ArticleDOI
30 Dec 2008
TL;DR: In this paper, the authors proposed a low voltage transistor based on tunneling and provided Ion and Ioff far superior to MOSFET at 0.2V if suitable low-Eg material is introduced into IC manufacturing.
Abstract: IC power consumption is not only a package thermal issue but also a significant and fast growing part of the world electricity consumption. A new low voltage transistor could contribute greatly to the need for a new Vdd scaling scenario. Green transistor (gFET) is based on tunneling and provides Ion and Ioff far superior to MOSFET at 0.2V if suitable low-Eg material is introduced into IC manufacturing.

58 citations

Proceedings ArticleDOI
17 Mar 1997
TL;DR: In this article, a sensitive and simple technique for parasitic interconnect capacitance measurement with 0.01 fF sensitivity is presented, which is based upon an efficient test structure design.
Abstract: In this paper, a sensitive and simple technique for parasitic interconnect capacitance measurement with 0.01 fF sensitivity is presented. This on-chip technique is based upon an efficient test structure design. No reference capacitor is needed. Only a DC current meter is required for its measurement. We have applied this technique to extract various interconnect geometry capacitances and compared the results to those from 3D simulations.

57 citations

Journal ArticleDOI
TL;DR: In this paper, a recessed channel SOI (RCSOI) technology was developed for fabricating ultrathin SOI MOSFET's with low source/drain series resistance.
Abstract: A new recessed-channel SOI (RCSOI) technology has been developed for fabricating ultrathin SOI MOSFET's with low source/drain series resistance. Thin-film fully depleted SOI MOSFET's with channel film thickness of 72 nm have been fabricated with the RCSOI technology. The new structure demonstrated a 70% reduction in source/drain series resistance compared with conventional processes. In the deep-submicron region, more than 80% improvement in saturation drain current and transconductance over conventional devices was achieved using the RCSOI technology. The new technology would also facilitate the use of silicide for further reducing the series resistance. >

57 citations

Journal ArticleDOI
TL;DR: In this paper, a simple, accurate method of measuring interconnect capacitances is presented, which is suitable for measurement-based, inter-connect capacitance characterization in a comparable fashion to current characterization efforts for MOSFET devices.
Abstract: A simple, accurate method of measuring interconnect capacitances is presented. The test structure has excellent resolution, needs only DC measurements, and is compact enough for scribe-line implementation. These qualities make it suitable for measurement-based, interconnect capacitance characterization in a comparable fashion to current characterization efforts for MOSFET devices. The entire characterization scheme is demonstrated for a production 0.5 /spl mu/m, three-level metal technology. The method not only provides an accurate assessment of actual capacitance variation but provides valuable feedback on the variability of physical parameters such as interlevel dielectric (ILD) thickness and drawn width reductions for process control as well.

57 citations

Journal ArticleDOI
TL;DR: In this article, a semi-quantitative model for the lateral channel electric field in LDD MOSFET's has been derived from a quasi-two-dimensional analysis under the assumption of a uniform doping profile.
Abstract: A semi-quantitative model for the lateral channel electric field in LDD MOSFET's has been developed. This model is derived from a quasi-two-dimensional analysis under the assumption of a uniform doping profile. A field reduction factor and voltage improvement, indicating the effectiveness of an LDD design in reducing the peak channel field, are used to compare LDD structures with, without, and with partial gate/drain overlap. Approximate equations have been derived that show the dependencies of the field reduction factor on bias conditions and process parameters. Plots showing the trade-off between, and the process-dependencies of, the field reduction factor/voltage improvement and the series resistance are presented for the three cases. Structures with gate-drain overlap are found to provide greater field reduction than those without the overlap for the same series resistance introduced. This should be considered when comparing the double-diffused and spacer LDD structures. It is shown that gate-drain offset can cause the rise of channel field and substrate current at large gate voltages. This offset is also found to be responsible for nonsaturation of drain current. The model has also been compared with two-dimensional simulation results.

57 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Book
01 Jan 1999
TL;DR: The analysis and design techniques of CMOS integrated circuits that practicing engineers need to master to succeed can be found in this article, where the authors describe the thought process behind each circuit topology, but also consider the rationale behind each modification.
Abstract: The CMOS technology area has quickly grown, calling for a new text--and here it is, covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems, the book not only describes the thought process behind each circuit topology, but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies. Table of contents 1 Introduction to Analog Design 2 Basic MOS Device Physics 3 Single-Stage Amplifiers 4 Differential Amplifiers 5 Passive and Active Current Mirrors 6 Frequency Response of Amplifiers 7 Noise 8 Feedback 9 Operational Amplifiers 10 Stability and Frequency Compensation 11 Bandgap References 12 Introduction to Switched-Capacitor Circuits 13 Nonlinearity and Mismatch 14 Oscillators 15 Phase-Locked Loops 16 Short-Channel Effects and Device Models 17 CMOS Processing Technology 18 Layout and Packaging

4,826 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations