scispace - formally typeset
Search or ask a question
Author

Chenming Hu

Other affiliations: Motorola, National Chiao Tung University, Semtech  ...read more
Bio: Chenming Hu is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: MOSFET & Gate oxide. The author has an hindex of 119, co-authored 1296 publications receiving 57264 citations. Previous affiliations of Chenming Hu include Motorola & National Chiao Tung University.
Topics: MOSFET, Gate oxide, CMOS, Gate dielectric, Transistor


Papers
More filters
Patent
06 Jun 1989
TL;DR: In this article, a process for forming an oxide isolated semiconductor wafer, which can include the formation of an associated high voltage transistor, is described. But this process requires the fabrication of a large number of low voltage transistors which can be connected in the form of circuitry.
Abstract: A process is disclosed for forming an oxide isolated semiconductor wafer which can include the formation of an associated high voltage transistor. The same wafer can include a plurality of low voltage transistors which can be connected in the form of circuitry that can control the high voltage transistor. Thus, a single IC chip can be fabricated for a power control function. The process includes bonding a first wafer to a second wafer using oxide (11/14), forming a groove (18) through the oxide (15), backfilling with epitaxially regrown semiconductor (19) to provide a high voltage section, and subsequently forming the high voltage transistor, e.g. NPN or DMOS devices, in said section.

55 citations

Journal ArticleDOI
TL;DR: An approach for modeling hot-electron induced change in drain current that significantly improves the ease of parameter extraction and provides new capabilities for modeling the effect of bidirectional stressing and the asymmetrical I-V characteristics after stressing is presented in this paper.
Abstract: An approach for modeling hot-electron induced change in drain current that significantly improves the ease of parameter extraction and provides new capabilities for modeling the effect of bidirectional stressing and the asymmetrical I-V characteristics after stressing is presented. The change in the drain current, Delta I/sub D/ is implemented as an asymmetrical voltage-controlled current source and the new Delta I/sub D/ model is independent of the MOSFET model used for circuit simulation. The physical basis of the model, the analytical model equations, the implementation scheme in BERT (BErkeley Reliability Tools) simulator and simulation results for uni- and bidirectional circuit stressing are presented. >

54 citations

Journal ArticleDOI
TL;DR: In this paper, the frequency response of resonant-cavity, separate absorption and multiplication (SAM) avalanche photodiodes (APDs) has been investigated and a unity-gain bandwidth of 23 GHz and a high gain-bandwidth product of 130 GHz have been achieved.
Abstract: Previously it has been shown that resonant-cavity, separate absorption and multiplication (SAM) avalanche photodiodes (APDs) exhibit high peak external quantum efficiency (∼75%), low dark current, low bias voltage (<15 V), and low multiplication noise (0.2

54 citations

Proceedings ArticleDOI
05 Nov 2000
TL;DR: It is demonstrated, for example, that optimal wire sizing models need to consider inductive effects -- and that use of more accurate worst-case capacitive coupling noise switch factors substantially increases peak noise estimates compared to traditional {0,2} bounds.
Abstract: In this paper, we quantify the impact of global interconnect optimization techniques that address such design objectives as delay, peak noise, delay uncertainty due to noise, power, and cost. In doing so, we develop a new system-performance simulation model as a set of studies within the MARCO GSRC Technology Extrapolation (GTX) system. We model a typical point-to-point global interconnect and focus on accurate assessment of both circuit and design technology with respect to such issues as inductance, signal line shielding, dynamic delay, buffer placement uncertainty and repeater staggering. We demonstrate, for example, that optimal wire sizing models need to consider inductive effects -- and that use of more accurate {-1,3} worst-case capacitive coupling noise switch factors substantially increases peak noise estimates compared to traditional {0,2} bounds. We also find that optimal repeater sizes are significantly smaller than conventional models would suggest, especially when considering energy-delay issues.

54 citations

Journal ArticleDOI
TL;DR: The dependence of the plasma-induced oxide charging current on Al electrode geometry has been studied in this article, where the authors predict the impact of these processes on oxide integrity and interface stability for a given antenna geometry more accurately.
Abstract: The dependence of the plasma-induced oxide charging current on Al electrode geometry has been studied. The stress current is collected only through the electrode surfaces not covered by the photoresist during plasma processes and therefore is proportional to the edge length of the electrode during etching and proportional to the electrode area during photoresist ashing. Knowing the measured oxide charging currents, one should be able to predict the impact of these processes on oxide integrity and interface stability for a given antenna geometry more accurately. >

53 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Book
01 Jan 1999
TL;DR: The analysis and design techniques of CMOS integrated circuits that practicing engineers need to master to succeed can be found in this article, where the authors describe the thought process behind each circuit topology, but also consider the rationale behind each modification.
Abstract: The CMOS technology area has quickly grown, calling for a new text--and here it is, covering the analysis and design of CMOS integrated circuits that practicing engineers need to master to succeed. Filled with many examples and chapter-ending problems, the book not only describes the thought process behind each circuit topology, but also considers the rationale behind each modification. The analysis and design techniques focus on CMOS circuits but also apply to other IC technologies. Table of contents 1 Introduction to Analog Design 2 Basic MOS Device Physics 3 Single-Stage Amplifiers 4 Differential Amplifiers 5 Passive and Active Current Mirrors 6 Frequency Response of Amplifiers 7 Noise 8 Feedback 9 Operational Amplifiers 10 Stability and Frequency Compensation 11 Bandgap References 12 Introduction to Switched-Capacitor Circuits 13 Nonlinearity and Mismatch 14 Oscillators 15 Phase-Locked Loops 16 Short-Channel Effects and Device Models 17 CMOS Processing Technology 18 Layout and Packaging

4,826 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations