Author
Cheol Mun
Other affiliations: Samsung, Electronics and Telecommunications Research Institute
Bio: Cheol Mun is an academic researcher from Korea National University of Transportation. The author has contributed to research in topics: MIMO & Communication channel. The author has an hindex of 19, co-authored 103 publications receiving 1429 citations. Previous affiliations of Cheol Mun include Samsung & Electronics and Telecommunications Research Institute.
Papers published on a yearly basis
Papers
More filters
TL;DR: Simulation results show that both schemes effectively compensate the uplink throughput degradation of the macrocell BS due to the cross-tier interference and that the closed- loop control provides better femtocell throughput than the open-loop control at a minimal cost of macrocell throughput.
Abstract: This paper proposes two interference mitigation strategies that adjust the maximum transmit power of femtocell users to suppress the cross-tier interference at a macrocell base station (BS). The open-loop and the closed-loop control suppress the cross-tier interference less than a fixed threshold and an adaptive threshold based on the noise and interference (NI) level at the macrocell BS, respectively. Simulation results show that both schemes effectively compensate the uplink throughput degradation of the macrocell BS due to the cross-tier interference and that the closed-loop control provides better femtocell throughput than the open-loop control at a minimal cost of macrocell throughput.
302 citations
Patent•
30 May 2006TL;DR: In this article, a receiver estimates a fading channel of received data, selects a weight set relative to a maximum data transmission rate from at least one weight set with elements of a plurality of orthogonal weight vectors, and transmits feedback information including the selected weight set and channel-by-channel state information to a transmitter.
Abstract: An apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas are provided. A receiver estimates a fading channel of received data, selects a weight set relative to a maximum data transmission rate from at least one weight set with elements of a plurality of orthogonal weight vectors, and transmits feedback information including the selected weight set and channel-by-channel state information to a transmitter. The transmitter demultiplexes data to be transmitted on a basis of the feedback information into at least one sub-data stream, multiplies each sub-data stream by an associated weight, and transmits the data.
133 citations
TL;DR: This paper proposes a self-optimized coverage coordination scheme for two-tier femtocell networks, in which a fem tocell base station adjusts the transmit power based on the statistics of the signal and the interference power that is measured at a Femtocell downlink.
Abstract: This paper proposes a self-optimized coverage coordination scheme for two-tier femtocell networks, in which a femtocell base station adjusts the transmit power based on the statistics of the signal and the interference power that is measured at a femtocell downlink. Furthermore, an analytic expression is derived for the coverage leakage probability that a femtocell coverage area leaks into an outdoor macrocell. The coverage analysis is verified by simulation, which shows that the proposed scheme provides sufficient indoor femtocell coverage and that the femtocell coverage does not leak into an outdoor macrocell.
113 citations
Patent•
23 Jun 2005TL;DR: In this article, an apparatus and method for transmitting and receiving packet data using multiple antennas in a wireless communication system is presented, which can efficiently transmit and receive packet data according to channel conditions without a waste of transmission bandwidth.
Abstract: An apparatus and method for transmitting and receiving packet data using multiple antennas in a wireless communication system is provided. In a wireless communication, system using multiple antennas, the apparatus and method can efficiently transmit and receive packet data according to channel conditions without a waste of transmission bandwidth.
73 citations
TL;DR: The results show that the employment of multiple antennas at a reader causes the received SNR to change favorably and contributes to the improvement of the average RIR of the MIMO-RFID system in the uncorrelated Rayleigh fading channel.
Abstract: In this paper, the reverse-link interrogation range (RIR) of ultrahigh-frequency-band passive radio-frequency identification (RFID) is analyzed for single-input and single-output (SISO) and multiple-input and multiple-output (MIMO) systems with maximal-ratio combining in the pinhole channel, where each channel is modeled as an arbitrarily correlated Nakagami-m distribution. Under the assumptions of perfect channel estimation and no interference, the closed-form expression of average RIR is derived, involving various parameters, such as the number of antennas, correlation, reader structure, and Nakagami- m shaping factor. The results show that the employment of multiple antennas at a reader causes the received SNR to change favorably and contributes to the improvement of the average RIR. Particularly, for the bistatic structure and Rayleigh fading (m = 0 dB), a 3 × 3 MIMO-RFID system can achieve 60% gain in the average RIR compared to the SISO-RFID system. In order to consider more realistic environments, finally, we investigated the influence of interference and imperfect channel estimation on the average RIR of the MIMO-RFID system in the uncorrelated Rayleigh fading channel.
70 citations
Cited by
More filters
TL;DR: This tutorial provides a broad look at the field of limited feedback wireless communications, and reviews work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology.
Abstract: It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.
1,605 citations
Book•
03 Jan 2018TL;DR: This monograph summarizes many years of research insights in a clear and self-contained way and providest the reader with the necessary knowledge and mathematical toolsto carry out independent research in this area.
Abstract: Massive multiple-input multiple-output MIMO is one of themost promising technologies for the next generation of wirelesscommunication networks because it has the potential to providegame-changing improvements in spectral efficiency SE and energyefficiency EE. This monograph summarizes many years ofresearch insights in a clear and self-contained way and providesthe reader with the necessary knowledge and mathematical toolsto carry out independent research in this area. Starting froma rigorous definition of Massive MIMO, the monograph coversthe important aspects of channel estimation, SE, EE, hardwareefficiency HE, and various practical deployment considerations.From the beginning, a very general, yet tractable, canonical systemmodel with spatial channel correlation is introduced. This modelis used to realistically assess the SE and EE, and is later extendedto also include the impact of hardware impairments. Owing tothis rigorous modeling approach, a lot of classic "wisdom" aboutMassive MIMO, based on too simplistic system models, is shownto be questionable.
1,352 citations
TL;DR: This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology.
Abstract: Femtocells, despite their name, pose a potentially large disruption to the carefully planned cellular networks that now connect a majority of the planet's citizens to the Internet and with each other. Femtocells - which by the end of 2010 already outnumbered traditional base stations and at the time of publication are being deployed at a rate of about five million a year - both enhance and interfere with this network in ways that are not yet well understood. Will femtocells be crucial for offloading data and video from the creaking traditional network? Or will femtocells prove more trouble than they are worth, undermining decades of careful base station deployment with unpredictable interference while delivering only limited gains? Or possibly neither: are femtocells just a "flash in the pan"; an exciting but short-lived stage of network evolution that will be rendered obsolete by improved WiFi offloading, new backhaul regulations and/or pricing, or other unforeseen technological developments? This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology. In the course of the article, we also position and introduce the articles that headline this special issue.
1,277 citations
TL;DR: A tractable framework for SINR analysis in downlink heterogeneous cellular networks (HCNs) with flexible cell association policies is developed and the average ergodic rate of the typical user, and the minimum average users throughput - the smallest value among the average user throughputs supported by one cell in each tier is derived.
Abstract: In this paper we develop a tractable framework for SINR analysis in downlink heterogeneous cellular networks (HCNs) with flexible cell association policies. The HCN is modeled as a multi-tier cellular network where each tier's base stations (BSs) are randomly located and have a particular transmit power, path loss exponent, spatial density, and bias towards admitting mobile users. For example, as compared to macrocells, picocells would usually have lower transmit power, higher path loss exponent (lower antennas), higher spatial density (many picocells per macrocell), and a positive bias so that macrocell users are actively encouraged to use the more lightly loaded picocells. In the present paper we implicitly assume all base stations have full queues; future work should relax this. For this model, we derive the outage probability of a typical user in the whole network or a certain tier, which is equivalently the downlink SINR cumulative distribution function. The results are accurate for all SINRs, and their expressions admit quite simple closed-forms in some plausible special cases. We also derive the average ergodic rate of the typical user, and the minimum average user throughput - the smallest value among the average user throughputs supported by one cell in each tier. We observe that neither the number of BSs or tiers changes the outage probability or average ergodic rate in an interference-limited full-loaded HCN with unbiased cell association (no biasing), and observe how biasing alters the various metrics.
1,140 citations
TL;DR: A fundamental relation is derived providing the largest feasible cellular Signal-to-Interference-Plus-Noise Ratio (SINR), given any set of feasible femtocell SINRs, which motivate design of power control schemes requiring minimal network overhead in two-tier networks with shared spectrum.
Abstract: In a two tier cellular network - comprised of a central macrocell underlaid with shorter range femtocell hotspots - cross-tier interference limits overall capacity with universal frequency reuse. To quantify near-far effects with universal frequency reuse, this paper derives a fundamental relation providing the largest feasible cellular Signal-to-Interference-Plus-Noise Ratio (SINR), given any set of feasible femtocell SINRs. We provide a link budget analysis which enables simple and accurate performance insights in a two-tier network. A distributed utility- based SINR adaptation at femtocells is proposed in order to alleviate cross-tier interference at the macrocell from cochannel femtocells. The Foschini-Miljanic (FM) algorithm is a special case of the adaptation. Each femtocell maximizes their individual utility consisting of a SINR based reward less an incurred cost (interference to the macrocell). Numerical results show greater than 30% improvement in mean femtocell SINRs relative to FM. In the event that cross-tier interference prevents a cellular user from obtaining its SINR target, an algorithm is proposed that reduces transmission powers of the strongest femtocell interferers. The algorithm ensures that a cellular user achieves its SINR target even with 100 femtocells/cell-site (with typical cellular parameters) and requires a worst case SINR reduction of only 16% at femtocells. These results motivate design of power control schemes requiring minimal network overhead in two-tier networks with shared spectrum.
785 citations