scispace - formally typeset
Search or ask a question
Author

Cheryl L. Sisk

Bio: Cheryl L. Sisk is an academic researcher from Michigan State University. The author has contributed to research in topics: Binge eating & Eating disorders. The author has an hindex of 40, co-authored 142 publications receiving 6992 citations. Previous affiliations of Cheryl L. Sisk include Virginia Commonwealth University.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the evidence that steroid-dependent organization of the adolescent brain programs a variety of adult behaviors in animals and humans can be found in this article, where convergence lines of evidence indicate that adolescence may be a sensitive period for steroiddependent brain organization and that variation in the timing of interactions between the hormones of puberty and the adult brain leads to individual differences in adult behavior and risk of sexbiased psychopathologies.

957 citations

Journal ArticleDOI
TL;DR: The pubertal transition to adulthood involves both gonadal and behavioral maturation, and reproductive maturity is the product of developmentally timed, brain-driven and recurrent interactions between steroid hormones and the adolescent nervous system.
Abstract: The pubertal transition to adulthood involves both gonadal and behavioral maturation. A developmental clock, along with permissive signals that provide information on somatic growth, energy balance and season, time the awakening of gonadotropin releasing hormone (GnRH) neurons at the onset of puberty. High-frequency GnRH release results from disinhibition and activation of GnRH neurons at puberty onset, leading to gametogenesis and an increase in gonadal steroid hormone secretion. Steroid hormones, in turn, both remodel and activate neural circuits during adolescent brain development, leading to the development of sexual salience of sensory stimuli, sexual motivation, and expression of copulatory behaviors in specific social contexts. These influences of hormones on reproductive behavior depend in part on changes in the adolescent brain that occur independently of gonadal maturation. Reproductive maturity is therefore the product of developmentally timed, brain-driven and recurrent interactions between steroid hormones and the adolescent nervous system.

951 citations

Journal ArticleDOI
TL;DR: Evidence that adolescence is part of a single protracted postnatal sensitive period for steroid-dependent organization of male mating behavior that begins perinatally and ends in late adolescence is presented and is consistent with the original formulation of the organizational/activational hypothesis.

513 citations

Journal ArticleDOI
TL;DR: Removing gonadal hormones before puberty eliminates sex differences in pubertal addition of cells, indicating that gonadal steroids direct the addition of new cells during puberty to maintain and accentuate sexual dimorphisms in the adult brain.
Abstract: New cells, including neurons, arise in several brain regions during puberty in rats. Sex differences in pubertal addition of cells coincide with adult sexual dimorphisms: for each region, the sex that gains more cells during puberty has a larger volume in adulthood. Removing gonadal hormones before puberty eliminates these sex differences, indicating that gonadal steroids direct the addition of new cells during puberty to maintain and accentuate sexual dimorphisms in the adult brain.

338 citations

Journal ArticleDOI
TL;DR: Evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence, and the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods.

215 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: This article proposes a framework for theory and research on risk-taking that is informed by developmental neuroscience, and finds that changes in the brain's cognitive control system - changes which improve individuals' capacity for self-regulation - occur across adolescence and young adulthood.

2,857 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: Evidence is provided that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature, which suggests differential development of bottom‐up limbic systems to top‐down control systems during adolescence as compared to childhood and adulthood.
Abstract: Adolescence is a developmental period characterized by suboptimal decisions and actions that are associated with an increased incidence of unintentional injuries, violence, substance abuse, unintended pregnancy, and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to both childhood and adulthood. This review provides a biologically plausible model of the neural mechanisms underlying these nonlinear changes in behavior. We provide evidence from recent human brain imaging and animal studies that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature. These findings suggest differential development of bottom-up limbic systems, implicated in incentive and emotional processing, to top-down control systems during adolescence as compared to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents prone to emotional reactivity, increasing the likelihood of poor outcomes.

2,660 citations

Journal ArticleDOI
TL;DR: It is concluded that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses, and fundamental changes in chemical testing and safety determination are needed to protect human health.
Abstract: For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from...

2,475 citations