scispace - formally typeset
Search or ask a question
Author

Chi-Keung Luk

Bio: Chi-Keung Luk is an academic researcher from Intel. The author has contributed to research in topics: Compiler & Cache. The author has an hindex of 22, co-authored 40 publications receiving 6599 citations. Previous affiliations of Chi-Keung Luk include The Chinese University of Hong Kong & University of Toronto.

Papers
More filters
Journal ArticleDOI
12 Jun 2005
TL;DR: The goals are to provide easy-to-use, portable, transparent, and efficient instrumentation, and to illustrate Pin's versatility, two Pintools in daily use to analyze production software are described.
Abstract: Robust and powerful software instrumentation tools are essential for program analysis tasks such as profiling, performance evaluation, and bug detection. To meet this need, we have developed a new instrumentation system called Pin. Our goals are to provide easy-to-use, portable, transparent, and efficient instrumentation. Instrumentation tools (called Pintools) are written in C/C++ using Pin's rich API. Pin follows the model of ATOM, allowing the tool writer to analyze an application at the instruction level without the need for detailed knowledge of the underlying instruction set. The API is designed to be architecture independent whenever possible, making Pintools source compatible across different architectures. However, a Pintool can access architecture-specific details when necessary. Instrumentation with Pin is mostly transparent as the application and Pintool observe the application's original, uninstrumented behavior. Pin uses dynamic compilation to instrument executables while they are running. For efficiency, Pin uses several techniques, including inlining, register re-allocation, liveness analysis, and instruction scheduling to optimize instrumentation. This fully automated approach delivers significantly better instrumentation performance than similar tools. For example, Pin is 3.3x faster than Valgrind and 2x faster than DynamoRIO for basic-block counting. To illustrate Pin's versatility, we describe two Pintools in daily use to analyze production software. Pin is publicly available for Linux platforms on four architectures: IA32 (32-bit x86), EM64T (64-bit x86), Itanium®, and ARM. In the ten months since Pin 2 was released in July 2004, there have been over 3000 downloads from its website.

4,019 citations

Proceedings ArticleDOI
12 Dec 2009
TL;DR: Adaptive mapping is proposed, a fully automatic technique to map computations to processing elements on a CPU+GPU machine and it is shown that, by judiciously distributing works over the CPU and GPU, automatic adaptive mapping achieves a 25% reduction in execution time and a 20% reduced in energy consumption than static mappings on average for a set of important computation benchmarks.
Abstract: Heterogeneous multiprocessors are increasingly important in the multi-core era due to their potential for high performance and energy efficiency. In order for software to fully realize this potential, the step that maps computations to processing elements must be as automated as possible. However, the state-of-the-art approach is to rely on the programmer to specify this mapping manually and statically. This approach is not only labor intensive but also not adaptable to changes in runtime environments like problem sizes and hardware/software configurations. In this study, we propose adaptive mapping, a fully automatic technique to map computations to processing elements on a CPU+GPU machine. We have implemented it in our experimental heterogeneous programming system called Qilin. Our results show that, by judiciously distributing works over the CPU and GPU, automatic adaptive mapping achieves a 25% reduction in execution time and a 20% reduction in energy consumption than static mappings on average for a set of important computation benchmarks. We also demonstrate that our technique is able to adapt to changes in the input problem size and system configuration.

565 citations

Proceedings ArticleDOI
01 Sep 1996
TL;DR: It is demonstrated that compiler-inserted prefetching can significantly improve the execution speed of pointer-based codes---as much as 45% for the applications the authors study and can improve performance by as much as twofold.
Abstract: Software-controlled data prefetching offers the potential for bridging the ever-increasing speed gap between the memory subsystem and today's high-performance processors. While prefetching has enjoyed considerable success in array-based numeric codes, its potential in pointer-based applications has remained largely unexplored. This paper investigates compiler-based prefetching for pointer-based applications---in particular, those containing recursive data structures. We identify the fundamental problem in prefetching pointer-based data structures and propose a guideline for devising successful prefetching schemes. Based on this guideline, we design three prefetching schemes, we automate the most widely applicable scheme (greedy prefetching) in an optimizing research compiler, and we evaluate the performance of all three schemes on a modern superscalar processor similar to the MIPS R10000. Our results demonstrate that compiler-inserted prefetching can significantly improve the execution speed of pointer-based codes---as much as 45% for the applications we study. In addition, the more sophisticated algorithms (which we currently perform by hand, but which might be implemented in future compilers) can improve performance by as much as twofold. Compared with the only other compiler-based pointer prefetching scheme in the literature, our algorithms offer substantially better performance by avoiding unnecessary overhead and hiding more latency.

418 citations

Proceedings ArticleDOI
04 Jun 2011
TL;DR: The Pochoir stencil compiler allows a programmer to write a simple specification of a stencil in a domain-specific stencil language embedded in C++ which the Pochir compiler then translates into high-performing Cilk code that employs an efficient parallel cache-oblivious algorithm.
Abstract: A stencil computation repeatedly updates each point of a d-dimensional grid as a function of itself and its near neighbors. Parallel cache-efficient stencil algorithms based on "trapezoidal decompositions" are known, but most programmers find them difficult to write. The Pochoir stencil compiler allows a programmer to write a simple specification of a stencil in a domain-specific stencil language embedded in C++ which the Pochoir compiler then translates into high-performing Cilk code that employs an efficient parallel cache-oblivious algorithm. Pochoir supports general d-dimensional stencils and handles both periodic and aperiodic boundary conditions in one unified algorithm. The Pochoir system provides a C++ template library that allows the user's stencil specification to be executed directly in C++ without the Pochoir compiler (albeit more slowly), which simplifies user debugging and greatly simplified the implementation of the Pochoir compiler itself. A host of stencil benchmarks run on a modern multicore machine demonstrates that Pochoir outperforms standard parallelloop implementations, typically running 2-10 times faster. The algorithm behind Pochoir improves on prior cache-efficient algorithms on multidimensional grids by making "hyperspace" cuts, which yield asymptotically more parallelism for the same cache efficiency.

364 citations

Proceedings ArticleDOI
01 May 2001
TL;DR: This paper proposes a pre-execution technique for simultaneous multithreading (SMT) processors that is significantly simpler to implement and offers an average speedup of 24% in a set of irregular applications, which is a 19% speedup over state-of-the-art software-controlled prefetching.
Abstract: Hardly predictable data addresses in many irregular applications have rendered prefetching ineffective. In many cases, the only accurate way to predict these addresses is to directly execute the code that generates them. As multithreaded architectures become increasingly popular, one attractive approach is to use idle threads on these machines to perform pre-execution—essentially a combined act of speculative address generation and prefetching—to accelerate the main thread. In this paper, we propose such a pre-execution technique for simultaneous multithreading (SMT) processors. By using software to control pre-execution, we are able to handle some of the most important access patterns that are typically difficult to prefetch. Compared with existing work on pre-execution, our technique is significantly simpler to implement (e.g., no integration of pre-execution results, no need of shortening programs for pre-execution, and no need of special hardware to copy register values upon thread spawns). Consequently, only minimal extensions to SMT machines are required to support our technique. Despite its simplicity, our technique offers an average speedup of 24% in a set of irregular applications, which is a 19% speedup over state-of-the-art software-controlled prefetching.

274 citations


Cited by
More filters
Journal ArticleDOI
12 Jun 2005
TL;DR: The goals are to provide easy-to-use, portable, transparent, and efficient instrumentation, and to illustrate Pin's versatility, two Pintools in daily use to analyze production software are described.
Abstract: Robust and powerful software instrumentation tools are essential for program analysis tasks such as profiling, performance evaluation, and bug detection. To meet this need, we have developed a new instrumentation system called Pin. Our goals are to provide easy-to-use, portable, transparent, and efficient instrumentation. Instrumentation tools (called Pintools) are written in C/C++ using Pin's rich API. Pin follows the model of ATOM, allowing the tool writer to analyze an application at the instruction level without the need for detailed knowledge of the underlying instruction set. The API is designed to be architecture independent whenever possible, making Pintools source compatible across different architectures. However, a Pintool can access architecture-specific details when necessary. Instrumentation with Pin is mostly transparent as the application and Pintool observe the application's original, uninstrumented behavior. Pin uses dynamic compilation to instrument executables while they are running. For efficiency, Pin uses several techniques, including inlining, register re-allocation, liveness analysis, and instruction scheduling to optimize instrumentation. This fully automated approach delivers significantly better instrumentation performance than similar tools. For example, Pin is 3.3x faster than Valgrind and 2x faster than DynamoRIO for basic-block counting. To illustrate Pin's versatility, we describe two Pintools in daily use to analyze production software. Pin is publicly available for Linux platforms on four architectures: IA32 (32-bit x86), EM64T (64-bit x86), Itanium®, and ARM. In the ten months since Pin 2 was released in July 2004, there have been over 3000 downloads from its website.

4,019 citations

Proceedings ArticleDOI
04 Oct 2009
TL;DR: This characterization shows that the Rodinia benchmarks cover a wide range of parallel communication patterns, synchronization techniques and power consumption, and has led to some important architectural insight, such as the growing importance of memory-bandwidth limitations and the consequent importance of data layout.
Abstract: This paper presents and characterizes Rodinia, a benchmark suite for heterogeneous computing. To help architects study emerging platforms such as GPUs (Graphics Processing Units), Rodinia includes applications and kernels which target multi-core CPU and GPU platforms. The choice of applications is inspired by Berkeley's dwarf taxonomy. Our characterization shows that the Rodinia benchmarks cover a wide range of parallel communication patterns, synchronization techniques and power consumption, and has led to some important architectural insight, such as the growing importance of memory-bandwidth limitations and the consequent importance of data layout.

2,697 citations

Proceedings ArticleDOI
10 Jun 2007
TL;DR: Valgrind is described, a DBI framework designed for building heavyweight DBA tools that can be used to build more interesting, heavyweight tools that are difficult or impossible to build with other DBI frameworks such as Pin and DynamoRIO.
Abstract: Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI has not been fully exploited.In this paper we describe Valgrind, a DBI framework designed for building heavyweight DBA tools. We focus on its unique support for shadow values-a powerful but previously little-studied and difficult-to-implement DBA technique, which requires a tool to shadow every register and memory value with another value that describes it. This support accounts for several crucial design features that distinguish Valgrind from other DBI frameworks. Because of these features, lightweight tools built with Valgrind run comparatively slowly, but Valgrind can be used to build more interesting, heavyweight tools that are difficult or impossible to build with other DBI frameworks such as Pin and DynamoRIO.

2,540 citations

Proceedings ArticleDOI
12 Dec 2009
TL;DR: Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taking into account configuring clusters with 4 cores gives thebest EDA2P and EDAP.
Abstract: This paper introduces McPAT, an integrated power, area, and timing modeling framework that supports comprehensive design space exploration for multicore and manycore processor configurations ranging from 90nm to 22nm and beyond. At the microarchitectural level, McPAT includes models for the fundamental components of a chip multiprocessor, including in-order and out-of-order processor cores, networks-on-chip, shared caches, integrated memory controllers, and multiple-domain clocking. At the circuit and technology levels, McPAT supports critical-path timing modeling, area modeling, and dynamic, short-circuit, and leakage power modeling for each of the device types forecast in the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors. McPAT has a flexible XML interface to facilitate its use with many performance simulators. Combined with a performance simulator, McPAT enables architects to consistently quantify the cost of new ideas and assess tradeoffs of different architectures using new metrics like energy-delay-area2 product (EDA2P) and energy-delay-area product (EDAP). This paper explores the interconnect options of future manycore processors by varying the degree of clustering over generations of process technologies. Clustering will bring interesting tradeoffs between area and performance because the interconnects needed to group cores into clusters incur area overhead, but many applications can make good use of them due to synergies of cache sharing. Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taken into account configuring clusters with 4 cores gives the best EDA2P and EDAP.

2,487 citations

01 Jan 1978
TL;DR: This ebook is the first authorized digital version of Kernighan and Ritchie's 1988 classic, The C Programming Language (2nd Ed.), and is a "must-have" reference for every serious programmer's digital library.
Abstract: This ebook is the first authorized digital version of Kernighan and Ritchie's 1988 classic, The C Programming Language (2nd Ed.). One of the best-selling programming books published in the last fifty years, "K&R" has been called everything from the "bible" to "a landmark in computer science" and it has influenced generations of programmers. Available now for all leading ebook platforms, this concise and beautifully written text is a "must-have" reference for every serious programmers digital library. As modestly described by the authors in the Preface to the First Edition, this "is not an introductory programming manual; it assumes some familiarity with basic programming concepts like variables, assignment statements, loops, and functions. Nonetheless, a novice programmer should be able to read along and pick up the language, although access to a more knowledgeable colleague will help."

2,120 citations