scispace - formally typeset
Search or ask a question
Author

Chia-Fon Lee

Other affiliations: Wuhan University, Princeton University, Urbana University  ...read more
Bio: Chia-Fon Lee is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Combustion & Diesel fuel. The author has an hindex of 43, co-authored 250 publications receiving 7040 citations. Previous affiliations of Chia-Fon Lee include Wuhan University & Princeton University.
Topics: Combustion, Diesel fuel, Soot, Diesel engine, Gasoline


Papers
More filters
Journal ArticleDOI
15 Nov 2016-Fuel
TL;DR: In this paper, an experimental investigation on the performance, combustion and emission characteristics of a port fuel-injection SI engine fueled with IBE-gasoline blends was carried out, and the IBE30 was selected to be compared with G100 under various equivalence ratio (Φ ǫ = 0.83-1) and engine load (300 and 500 kPa BMEP).

123 citations

Journal ArticleDOI
01 Jan 2009
TL;DR: In this paper, an optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine was used to investigate the combustion process using different fuels including European low sulfur diesel and bio-diesel fuels with advanced multiple injection strategies.
Abstract: An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine was used to investigate the combustion process using different fuels including European low sulfur diesel and bio-diesel fuels with advanced multiple injection strategies. Influences of injection timings and fuel types on combustion characteristics and emissions were studied under similar loads. In-cylinder pressure was measured and used for heat release analysis. High-speed combustion videos were captured for all the studied cases using the same frame rate. NO x emissions were measured in the exhaust pipe. Different combustion modes including conventional diesel combustion and low-temperature combustion were observed and confirmed from the heat release rates and the combustion images. Natural luminosity was found consistently lower for bio-diesel than the European low sulfur diesel fuel for all the cases. However, for NO x emissions, under conventional combustion cases such as cases 2 and 3, it was found that bio-diesel leads to increased NO x emissions. Under a certain injection strategy with retarded main injections like case 4 and 5, it is possible to have up to 34% lower NO x emissions for B100 than B0 for case 4 with low-temperature combustion mode. Simultaneous reduction of NO x and natural luminosity was achieved for advanced low-temperature combustion mode. It is hypothesized based on the results that the lower soot generation for bio-diesel fuel is believed due to a lower soot formation rate and a higher soot oxidation rate. The NO x increase problem for bio-diesel fuel can be amended by employing advanced injection strategies with low-temperature combustion modes.

116 citations

Journal ArticleDOI
TL;DR: In this article, an experimental investigation was conducted on a direct injection (DI) diesel engine with exhaust gas recirculation (EGR), coupled with port fuel injection (PFI) of n-butanol.

113 citations

Journal ArticleDOI
TL;DR: In this work, a similarity equation of the momentum boundary layer is studied for a moving flat plate with mass transfer in a stationary fluid and the solution is applicable to the practical problem of a shrinking sheet with a constant sheet velocity.
Abstract: In this work, a similarity equation of the momentum boundary layer is studied for a moving flat plate with mass transfer in a stationary fluid. The solution is applicable to the practical problem of a shrinking sheet with a constant sheet velocity. Theoretical estimation of the solution domain is obtained. It is shown that the solution only exists with mass suction at the wall surface. The equation with the associated boundary conditions is solved using numerical techniques. Greatly different from the continuously stretching surface problem and the Blasius problem with a free stream, quite complicated behavior is observed in the results. It is seen that there are three different solution zones divided by two critical mass transfer parameters, f"0"1~1.7028 and f"0"2~1.7324. When f"0f"0"2). There is a terminating point for the solution domain and the terminating point corresponds to a special algebraically decaying solution for the current problem. The current results provide a new solution branch of the Blasius equation, which is greatly different from the previous study and provide more insight into the understanding of the Blasius equation.

108 citations

Journal ArticleDOI
TL;DR: In this article, the acetone-butanol-ethanol (ABE) as an alternative fuel has drawn increasing attention in recent years due to its potential to eliminate various producti...
Abstract: Intermediate product of biobutanol production, acetone-butanol-ethanol (ABE) as an alternative fuel has drawn increasing attention in recent years due to its potential to eliminate various producti...

106 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review deals with drop impacts on thin liquid layers and dry surfaces, referred to as splashing, and their propagation is discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound.
Abstract: The review deals with drop impacts on thin liquid layers and dry surfaces. The impacts resulting in crown formation are referred to as splashing. Crowns and their propagation are discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound. The review begins with an explanation of various practical motivations feeding the interest in the fascinating phenomena of drop impact, and the above-mentioned topics are then considered in their experimental, theoretical, and computational aspects.

2,077 citations

Journal ArticleDOI
TL;DR: In this paper, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized, and it was shown that several fuel properties, including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics are highly correlated with the average unsaturation of the FA profiles.
Abstract: Biodiesel is a renewable transportation fuel consisting of fatty acid methyl esters (FAME), generally produced by transesterification of vegetable oils and animal fats. In this review, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized. Considerable compositional variability exists across the range of feedstocks. For example, coconut, palm and tallow contain high amounts of saturated FA; while corn, rapeseed, safflower, soy, and sunflower are dominated by unsaturated FA. Much less information is available regarding the FA profiles of algal lipids that could serve as biodiesel feedstocks. However, some algal species contain considerably higher levels of poly-unsaturated FA than is typically found in vegetable oils. Differences in chemical and physical properties among biodiesel fuels can be explained largely by the fuels’ FA profiles. Two features that are especially influential are the size distribution and the degree of unsaturation within the FA structures. For the 12 biodiesel types reviewed here, it was shown that several fuel properties – including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics – are highly correlated with the average unsaturation of the FAME profiles. Due to opposing effects of certain FAME structural features, it is not possible to define a single composition that is optimum with respect to all important fuel properties. However, to ensure satisfactory in-use performance with respect to low temperature operability and oxidative stability, biodiesel should contain relatively low concentrations of both long-chain saturated FAME and poly-unsaturated FAME.

1,527 citations

Journal ArticleDOI
TL;DR: In this article, a detailed review has been conducted to highlight different related aspects to the biodiesel industry, including, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodies, the economical viability and finally the future of the future biodiesel.
Abstract: As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum , and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production. It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.

1,496 citations

Journal ArticleDOI
TL;DR: In this paper, five types of models applied to HCCI engine modelling are discussed in the present paper, and specific strategies for diesel-fuelled, gasoline-fined, and other alternative fuelled combustion are also discussed.

1,068 citations

Journal ArticleDOI
TL;DR: In this article, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel.
Abstract: Butanol is a very competitive renewable biofuel for use in internal combustion engines given its many advantages. In this review, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel. The comparison of fuel properties indicates that n-butanol has the potential to overcome the drawbacks brought by low-carbon alcohols or biodiesel. Then, the development of butanol production is reviewed and various methods for increasing fermentative butanol production are introduced in detailed, i.e. metabolic engineering of the Clostridia, advanced fermentation technique. The most costive part of the fermentation is the substrate, so methods involved in renewed substrates are also mentioned. Next, the applications of butanol as a biofuel are summarized from three aspects: (1) fundamental combustion experiments in some well-defined burning reactors; (2) a substitute for gasoline in spark ignition engine; (3) a substitute for diesel fuel in compression ignition engine. These studies demonstrate that butanol, as a potential second generation biofuel, is a better alternative for the gasoline or diesel fuel, from the viewpoints of combustion characteristics, engine performance, and exhaust emissions. However, butanol has not been intensively studied when compared to ethanol or biodiesel, for which considerable numbers of reports are available. Finally, some challenges and future research directions are outlined in the last section of this review.

850 citations