scispace - formally typeset
Search or ask a question
Author

Chia-Liang Sun

Bio: Chia-Liang Sun is an academic researcher from Chang Gung University. The author has contributed to research in topics: Graphene & Carbon nanotube. The author has an hindex of 34, co-authored 76 publications receiving 3730 citations. Previous affiliations of Chia-Liang Sun include Memorial Hospital of South Bend & Academia Sinica.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a graphene/Pt-modified glassy carbon (GC) electrode was created to simultaneously characterize ascorbic acid (AA), dopamine (DA), and uric acid(UA) levels via cyclic voltammetry (CV) and differential pulse voltammetric (DPV).

469 citations

Journal ArticleDOI
22 Sep 2011-ACS Nano
TL;DR: In this study, graphene oxide nanoribbons (GONRs) were synthesized from the facile unzipping of multiwalled carbon nanotubes (MWCNTs) with the help of microwave energy and a core-shell MWCNT/GONR-modified glassy carbon electrode was used to electrochemically detect ascorbic acid, dopamine, and uric acid.
Abstract: In this study, graphene oxide nanoribbons (GONRs) were synthesized from the facile unzipping of multiwalled carbon nanotubes (MWCNTs) with the help of microwave energy. A core–shell MWCNT/GONR-modified glassy carbon (MWCNT/GONR/GC) electrode was used to electrochemically detect ascorbic acid (AA), dopamine (DA), and uric acid (UA). In cyclic voltammograms, the MWCNT/GONR/GC electrode was found to outperform the MWCNT- and graphene-modified GC electrodes in terms of peak current. For the simultaneous sensing of three analytes, well-separated voltammetric peaks were obtained using a MWCNT/GONR/GC electrode in differential pulse voltammetry measurements. The corresponding peak separations were 229.9 mV (AA to DA), 126.7 mV (DA to UA), and 356.6 mV (AA to UA). This excellent electrochemical performance can be attributed to the unique electronic structure of MWCNTs/GONRs: a high density of unoccupied electronic states above the Fermi level and enriched oxygen-based functionality at the edge of the graphene-lik...

285 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic, optical and electrochemical properties along with electronic behaviors of boron (B) and nitrogen (N) substituted Single Wall Carbon Nanotubes (SWCNTs) underlying density functional theory (DFT) simulations are discussed.

255 citations

Journal ArticleDOI
TL;DR: In this paper, the structure and electrochemical properties of arrayed nitrogen-containing carbon nanotube (CNx NT)−platinum nanoparticle (Pt NP) composites directly grown on Si substrates have been investigated.
Abstract: The structure and electrochemical properties of arrayed nitrogen-containing carbon nanotube (CNx NT)−platinum nanoparticle (Pt NP) composites directly grown on Si substrates have been investigated The CNx nanotube arrays were grown by microwave-plasma-enhanced chemical vapor deposition first and then acted as the template and support for Pt dispersion in the following sputtering process Under the same sputtering conditions, it was found that well-separated Pt NPs would form with an average diameter of 2 nm on the arrayed NTs while a continuous Pt thin film was observed on the bare Si substrate X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electron microscopy were employed to study bonding and structure changes with increasing deposition time Implications of the C1s and N1s bonding changes in XPS and their possible relation to the NT−Pt composite structures with self-limited size distribution are discussed Cyclic voltammograms show well-behaved curves in methanol oxidation, suggesting

219 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the spherical and size-selected CuO nanoparticles were well dispersed on the surface of graphene for the amperometric glucose detection, the low detection limit of 1μmol l−1 with wide linear range from 1μmol l− 1 to 8mol L−1 can be obtained using the CuO/graphene (CuOG)-modified glassy carbon (GC) electrode with a low loading under the applied potential of +060v vs Ag/AgCl, the optimal CuOG-modified GC electrode exhibits a sensitivity

218 citations


Cited by
More filters
01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes, and graphene analogues.
Abstract: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π–π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graph...

1,799 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations

Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets.
Abstract: Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co3O4 nanoparticles, a manganese–cobalt spinel MnCo2O4/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic–nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C–O and C–N bonding in the N-rmGO sheet, suggesting the formation of C–O–metal and C–N–metal bonds between N-doped graphene oxide and spinel oxide nanoparticles Co L-edge and Mn L-edge XANES suggested substitution of Co3+ sites by Mn3+, which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with th

1,184 citations