Author

# Chiang C. Mei

Other affiliations: Cornell University, University of Bergen, Polish Academy of Sciences ...read more

Bio: Chiang C. Mei is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Surface wave & Wind wave. The author has an hindex of 49, co-authored 216 publications receiving 10067 citations. Previous affiliations of Chiang C. Mei include Cornell University & University of Bergen.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1983

TL;DR: In this article, the authors present selected theoretical topics on ocean wave dynamics, including basic principles and applications in coastal and offshore engineering, all from a deterministic point of view, and the bulk of the material deals with the linearized theory.

Abstract: The aim of this book is to present selected theoretical topics on ocean wave dynamics, including basic principles and applications in coastal and offshore engineering, all from the deterministic point of view. The bulk of the material deals with the linearized theory.

2,003 citations

••

TL;DR: In this paper, a theory that strong reflection can be induced by the sandbars themselves, once the so-called Bragg resonance condition is met, was presented. But this theory is limited to weak reflection and fails at resonance.

Abstract: One of the possible mechanisms of forming offshore sandbars parallel to a coast is the wave-induced mass transport in the boundary layer near the sea bottom. For this mechanism to be effective, sufficient reflection must be present so that the waves are partially standing. The main part of this paper is to explain a theory that strong reflection can be induced by the sandbars themselves, once the so-called Bragg resonance condition is met. For constant mean depth and simple harmonic waves this resonance has been studied by Davies (1982), whose theory, is however, limited to weak reflection and fails at resonance. Comparison of the strong reflection theory with Heathershaw's (1982) experiments is made. Furthermore, if the incident waves are slightly detuned or slowly modulated in time, the scattering process is found to depend critically on whether the modulational frequency lies above or below a threshold frequency. The effects of mean beach slope are also studied. In addition, it is found for periodically modulated wave groups that nonlinear effects can radiate long waves over the bars far beyond the reach of the short waves themselves. Finally it is argued that the breakpoint bar of ordinary size formed by plunging breakers can provide enough reflection to initiate the first few bars, thereby setting the stage for resonant reflection for more bars.

319 citations

••

TL;DR: In this paper, the scattering of infinitesimal surface waves normally incident on a rectangular obstacle in a channel of finite depth is considered and a variational formulation is used as the basis of numerical computations.

Abstract: The scattering of infinitesimal surface waves normally incident on a rectangular obstacle in a channel of finite depth is considered. A variational formulation is used as the basis of numerical computations. Scattering properties for bottom and surface obstacles of various proportions, including thin barriers and surface docks, are presented. Comparison with experimental and theoretical results by other investigators is also made.

291 citations

••

TL;DR: In this article, the wave-induced stress in a porous elastic medium is studied on the basis of Biot's linearized theory which is a special case of the mixture theory, and several examples of potential interest to geophysics and foundation mechanics are treated analytically.

Abstract: Summary. Wave-induced stress in a porous elastic medium is studied on the basis of Biot's linearized theory which is a special case of the mixture theory. For sufficiently high frequencies which are pertinent to ocean waves and seismic waves, a boundary layer of Stokes' type is shown to exist near the free surface of the solid. Outside the boundary layer, fluid and the solid skeleton move together according to the laws of classical elasticity for a single phase. This division simplifies the analysis of the equations governing the two phases; and several examples of potential interest to geophysics and foundation mechanics are treated analytically.

291 citations

••

TL;DR: In this article, the authors examined the correction to Darcy's law due to weak convective inertia of the pore fluid and derived general formulae for all constitutive coefficients that can be calculated by numerical solution of certain canonical cell problems.

Abstract: Using the theory of homogenization we examine the correction to Darcy's law due to weak convective inertia of the pore fluid. General formulae are derived for all constitutive coefficients that can be calculated by numerical solution of certain canonical cell problems. For isotropic and homogeneous media the correction term is found to be cubic in the seepage velocity, hence remains small even for Reynolds numbers which are not very small. This implies that inertia, if it is weak, is of greater importance locally than globally. Existing empirical knowledge is qualitatively consistent with our conclusion since the linear law of Darcy is often accurate for moderate flow rates.

250 citations

##### Cited by

More filters

••

TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.

Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

••

TL;DR: In this article, the development of wave energy utilization since the 1970s is discussed, with a focus on the characterization of the wave energy resource; theoretical background, with especial relevance to hydrodynamics of wave absorption and control; how a large range of devices kept being proposed and studied, and how such devices can be organized into classes; the conception, design, model-testing, construction and deployment into real sea of prototypes.

Abstract: Sea wave energy is being increasingly regarded in many countries as a major and promising resource. The paper deals with the development of wave energy utilization since the 1970s. Several topics are addressed: the characterization of the wave energy resource; theoretical background, with especial relevance to hydrodynamics of wave energy absorption and control; how a large range of devices kept being proposed and studied, and how such devices can be organized into classes; the conception, design, model-testing, construction and deployment into real sea of prototypes; and the development of specific equipment (air and water turbines, high-pressure hydraulics, linear electrical generators) and mooring systems.

2,115 citations

••

TL;DR: In this paper, Hilbert spectral analysis is proposed as an alternative to wavelet analysis, which provides not only a more precise definition of particular events in time-frequency space, but also more physically meaningful interpretations of the underlying dynamic processes.

Abstract: We survey the newly developed Hilbert spectral analysis method and its applications to Stokes waves, nonlinear wave evolution processes, the spectral form of the random wave field, and turbulence. Our emphasis is on the inadequacy of presently available methods in nonlinear and nonstationary data analysis. Hilbert spectral analysis is here proposed as an alternative. This new method provides not only a more precise definition of particular events in time-frequency space than wavelet analysis, but also more physically meaningful interpretations of the underlying dynamic processes.

1,945 citations

••

TL;DR: In this paper, the Boussinesq equations for long waves in water of varying depth are derived for small amplitude waves, but do include non-linear terms, and solutions have been calculated numerically for a solitary wave on a beach of uniform slope, which is also derived analytically by using the linearized long-wave equations.

Abstract: Equations of motion are derived for long waves in water of varying depth. The equations are for small amplitude waves, but do include non-linear terms. They correspond to the Boussinesq equations for water of constant depth. Solutions have been calculated numerically for a solitary wave on a beach of uniform slope. These solutions include a reflected wave, which is also derived analytically by using the linearized long-wave equations.

1,352 citations