scispace - formally typeset
Search or ask a question
Author

Chien-Feng Li

Bio: Chien-Feng Li is an academic researcher from National Health Research Institutes. The author has contributed to research in topics: Nasopharyngeal carcinoma & Medicine. The author has an hindex of 34, co-authored 191 publications receiving 3636 citations. Previous affiliations of Chien-Feng Li include Chung Hwa University of Medical Technology & Kaohsiung Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings highlight ASS1 as a novel tumor suppressor in myxofibrosarcomas, with loss of expression linked to promoter methylation, clinical aggressiveness, and sensitivity to ADI-PEG20.
Abstract: Purpose: The principal goals were to identify and validate targetable metabolic drivers relevant to myxofibrosarcoma pathogenesis using a published transcriptome. Experimental Design: As the most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase ( ASS1) was selected for further analysis by methylation-specific PCR, pyrosequencing, and immunohistochemistry of myxofibrosarcoma samples. The roles of ASS1 in tumorigenesis and the therapeutic relevance of the arginine-depriving agent pegylated arginine deiminase (ADI-PEG20) were elucidated in ASS1-deficient myxofibrosarcoma cell lines and xenografts with and without stable ASS1 reexpression. Results: ASS1 promoter hypermethylation was detected in myxofibrosarcoma samples and cell lines and was strongly linked to ASS1 protein deficiency. The latter correlated with increased tumor grade and stage and independently predicted a worse survival. ASS1-deficient cell lines were auxotrophic for arginine and susceptible to ADI-PEG20 treatment, with dose-dependent reductions in cell viability and tumor growth attributable to cell-cycle arrest in the S-phase. ASS1 expression was restored in 2 of 3 ASS1-deficient myxofibrosarcoma cell lines by 5-aza-2′-deoxycytidine, abrogating the inhibitory effect of ADI-PEG20. Conditioned media following ASS1 reexpression attenuated HUVEC tube-forming capability, which was associated with suppression of MMP-9 and an antiangiogenic effect in corresponding myxofibrosarcoma xenografts. In addition to delayed wound closure and fewer invading cells in a Matrigel assay, ASS1 reexpression reduced tumor cell proliferation, induced G 1 -phase arrest, and downregulated cyclin E with corresponding growth inhibition in soft agar and xenograft assays. Conclusions: Our findings highlight ASS1 as a novel tumor suppressor in myxofibrosarcomas, with loss of expression linked to promoter methylation, clinical aggressiveness, and sensitivity to ADI-PEG20. Clin Cancer Res; 19(11); 2861–72. ©2013 AACR .

122 citations

Journal ArticleDOI
01 Jun 2007-Surgery
TL;DR: Remarkable prognostic heterogeneity exists in the high-risk category of the NIH scheme, which is not as effective as the modified criteria in identifying highly lethal GISTs that the authors classified as risk level IV.

102 citations

Journal ArticleDOI
TL;DR: It is shown that atypical spindle‐cell IMT can utilize the same ALK fusion mechanisms described previously in conventional IMT, whereas in clinically aggressive epithelioid inflammatory myofibroblastic sarcoma a novel recurrent ALK oncogenic mechanism is identified, resulting from fusion with the RRBP1 gene.
Abstract: ALK oncogenic activation mechanisms were characterized in four conventional spindle-cell inflammatory myofibroblastic tumours (IMT) and five atypical IMT, each of which had ALK genomic perturbations. Constitutively activated ALK oncoproteins were purified by ALK immunoprecipitation and electrophoresis, and were characterized by mass spectrometry. The four conventional IMT had TPM3/4-ALK fusions (two cases) or DCTN1-ALK fusions (two cases), whereas two atypical spindle-cell IMT had TFG-ALK and TPM3-ALK fusion in one case each, and three epithelioid inflammatory myofibroblastic sarcomas had RANBP2-ALK fusions in two cases, and a novel RRBP1-ALK fusion in one case. The epithelioid inflammatory myofibroblastic sarcoma with RRBP1-ALK fusion had cytoplasmic ALK expression with perinuclear accentuation, different from the nuclear membranous ALK localization in epithelioid inflammatory myofibroblastic sarcomas with RANBP2-ALK fusions. Evaluation of three additional uncharacterized epithelioid inflammatory myofibroblastic sarcomas with ALK cytoplasmic/perinuclear- accentuation expression demonstrated RRBP1-ALK fusion in two cases. These studies show that atypical spindle-cell IMT can utilize the same ALK fusion mechanisms described previously in conventional IMT, whereas in clinically aggressive epithelioid inflammatory myofibroblastic sarcoma we identify a novel recurrent ALK oncogenic mechanism, resulting from fusion with the RRBP1 gene. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

70 citations

Journal ArticleDOI
03 Jan 2019-Oncogene
TL;DR: KDM8 thus presents itself as an ideal therapeutic target for metabolic adaptation and castration-resistance of prostate cancer cells and is validated as a regulator for both androgen-responsive and metabolic genes.
Abstract: During the evolution into castration or therapy resistance, prostate cancer cells reprogram the androgen responses to cope with the diminishing level of androgens, and undergo metabolic adaption to the nutritionally deprived and hypoxia conditions. AR (androgen receptor) and PKM2 (pyruvate kinase M2) have key roles in these processes. We report in this study, KDM8/JMJD5, a histone lysine demethylase/dioxygnase, exhibits a novel property as a dual coactivator of AR and PKM2 and as such, it is a potent inducer of castration and therapy resistance. Previously, we showed that KDM8 is involved in the regulation of cell cycle and tumor metabolism in breast cancer cells. Its role in prostate cancer has not been explored. Here, we show that KDM8's oncogenic properties in prostate cancer come from its direct interaction (1) with AR to affect androgen response and (2) with PKM2 to regulate tumor metabolism. The interaction with AR leads to the elevated expression of androgen response genes in androgen-deprived conditions. They include ANCCA/ATAD2 and EZH2, which are directly targeted by KDM8 and involved in sustaining the survival of the cells under hormone-deprived conditions. Notably, in enzalutamide-resistant cells, the expressions of both KDM8 and EZH2 are further elevated, so are neuroendocrine markers. Consequently, EZH2 inhibitors or KDM8 knockdown both resensitize the cells toward enzalutamide. In the cytosol, KDM8 associates with PKM2, the gatekeeper of pyruvate flux and translocates PKM2 into the nucleus, where the KDM8/PKM2 complex serves as a coactivator of HIF-1α to upregulate glycolytic genes. Using shRNA knockdown, we validate KDM8's functions as a regulator for both androgen-responsive and metabolic genes. KDM8 thus presents itself as an ideal therapeutic target for metabolic adaptation and castration-resistance of prostate cancer cells.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The proposed modified National Institutes of Health consensus classification system, based on tumor size and mitotic count, may be useful in identifying which patients might potentially benefit from adjuvant therapy.

947 citations

Journal ArticleDOI
TL;DR: The study of drug-resistant tumours has advanced the understanding of kinase biology, enabling the development of novel kinase inhibitors and further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.
Abstract: Gastrointestinal stromal tumours (GISTs) are a paradigm for the development of personalized treatment for cancer patients. The nearly simultaneous discovery of a biomarker that is reflective of their origin and the presence of gain-of-function kinase mutations in these tumours set the stage for more accurate diagnosis and the development of kinase inhibitor therapy. Subsequent studies of genotype and phenotype have led to a molecular classification of GIST and to treatment optimization on the basis of molecular subtype. The study of drug-resistant tumours has advanced our understanding of kinase biology, enabling the development of novel kinase inhibitors. Further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.

678 citations

Journal Article
TL;DR: In this paper, solitary fibrous tumors (SFTs) are rare fibrous neoplasms arising from the pleura and have been reported at a wide range of anatomic sites.

543 citations

01 Mar 2014
TL;DR: A continuous-flow culture apparatus for maintaining proliferating cells in low-nutrient media for long periods of time is developed and used to undertake competitive proliferation assays, concluding that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Abstract: As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

493 citations