scispace - formally typeset
Search or ask a question
Author

Chien Hung Wu

Bio: Chien Hung Wu is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Chemistry & Thin-film transistor. The author has an hindex of 7, co-authored 7 publications receiving 561 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 1998
TL;DR: In this paper, a review of silicon carbide for microelectromechanical systems (SiC MEMS) is presented, where current efforts in developing SiC MEMs to extend the silicon-based MEMS technology to applications in harsh environments are discussed.
Abstract: Silicon carbide (SiC) is a promising material for the development of high-temperature solid-state electronics and transducers, owing to its excellent electrical, mechanical, and chemical properties. This paper is a review of silicon carbide for microelectromechanical systems (SiC MEMS). Current efforts in developing SiC MEMS to extend the silicon-based MEMS technology to applications in harsh environments are discussed. A summary is presented of the material properties that make SiC an attractive material for use in such environments. Challenges faced in the development of processing techniques are also outlined. Last, a review of the current stare of SiC MEMS devices and issues facing future progress are presented.

413 citations

Journal ArticleDOI
TL;DR: In this paper, a multilayer fabrication process utilizing low temperature deposition and micromolding techniques was developed to create the desired SiC structural components, and the fabrication and testing of surface micromachined polycrystalline silicon carbide micromotors were presented.
Abstract: The authors present the fabrication and testing of surface micromachined polycrystalline silicon carbide micromotors. A new multilayer fabrication process utilizing low temperature deposition and micromolding techniques was developed to create the desired SiC structural components. Typical operating voltages of salient-pole and wobble micromotors in room air were 100 and 80 V, respectively. Wobble micromotors were tested at room temperature in atmospheres of argon, nitrogen, oxygen, and room air (25% humidity). The gear ratio as a function of applied voltage was higher for operation in room air as compared with the other gases, suggesting a relationship between gear ratio and relative humidity. In addition, micromotors were tested at elevated temperatures and exhibited stable operation up to 500/spl deg/C.

45 citations

Journal ArticleDOI
TL;DR: In this paper, a method to control the orientation of highly textured polycrystalline SiC films has been developed, based on X-ray diffraction, transmission electron microscopy and Rutherford backscattering spectroscopy.
Abstract: X-ray diffraction, transmission electron microscopy, and Rutherford backscattering spectroscopy were used to characterize the microstructure of polycrystalline SiC films grown on as-deposited and annealed polysilicon substrates. For both substrate types, the texture of the SiC films resembles the polysilicon at the onset of SiC growth. During the high temperature deposition process, the as-deposited polysilicon recrystallizes without influencing the crystallinity of the overlying SiC. An investigation of the SiC/polysilicon interface reveals that a heteroepitaxial relationship exists between polysilicon and SiC grains. From this study, a method to control the orientation of highly textured polycrystalline SiC films has been developed.

41 citations

Journal ArticleDOI
TL;DR: In this paper, a review of silicon carbide for microelectromechanical systems (SiC MEMS) is presented, where current efforts in developing SiC MEMs to extend the silicon-based MEMS technology to applications in harsh environments are discussed.
Abstract: Silicon carbide (SiC) is a promising material for the development of high-temperature solid-state electronics and transducers, owing to its excellent electrical, mechanical, and chemical properties. This paper is a review of silicon carbide for microelectromechanical systems (SiC MEMS). Current efforts in developing SiC MEMS to extend the silicon-based MEMS technology to applications in harsh environments are discussed. A summary is presented of the material properties that make SiC an attractive material for use in such environments. Challenges faced in the development of processing techniques are also outlined. Last, a review of the current stare of SiC MEMS devices and issues facing future progress are presented.

28 citations

Patent
07 Nov 2002
TL;DR: In this paper, an array of electrostatically tiltable mirrors are formed in a MEMS structure, and two SOI wafers including their handle layers are bonded together.
Abstract: An array of electrostatically tiltable mirrors are formed in a MEMS structure. A first SOI wafer is etched to form an array of tiltable plates in the silicon device layer joined to the remainder of the wafer through pairs of torsion beams. A second SOI wafer is etched to form cavities corresponding to the tiltable plates. A ceramic multi-chip module (MCM) carrier is formed with multiple layers of wiring and electrodes corresponding to the tiltable plates. The two SOI wafers including their handle layers are bonded together. The handle layer of the second SOI is removed, and the bonded wafers are diced into chips. Each chip is bonded to a respective MCM carrier. Thereafter, the handle layer of the first SOI wafer is removed to release the tiltable mirror plates and the torsion beams. Electronic control chips may be bonded to the MCM carrier.

22 citations


Cited by
More filters
BookDOI
27 Sep 2001
TL;DR: In this paper, the authors present a detailed overview of the history of the field of flow simulation for MEMS and discuss the current state-of-the-art in this field.
Abstract: Part I: Background and Fundamentals Introduction, Mohamed Gad-el-Hak, University of Notre Dame Scaling of Micromechanical Devices, William Trimmer, Standard MEMS, Inc., and Robert H. Stroud, Aerospace Corporation Mechanical Properties of MEMS Materials, William N. Sharpe, Jr., Johns Hopkins University Flow Physics, Mohamed Gad-el-Hak, University of Notre Dame Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains, Robert M. Kirby and George Em Karniadakis, Brown University, and Oleg Mikulchenko and Kartikeya Mayaram, Oregon State University Liquid Flows in Microchannels, Kendra V. Sharp and Ronald J. Adrian, University of Illinois at Urbana-Champaign, Juan G. Santiago and Joshua I. Molho, Stanford University Burnett Simulations of Flows in Microdevices, Ramesh K. Agarwal and Keon-Young Yun, Wichita State University Molecular-Based Microfluidic Simulation Models, Ali Beskok, Texas A&M University Lubrication in MEMS, Kenneth S. Breuer, Brown University Physics of Thin Liquid Films, Alexander Oron, Technion, Israel Bubble/Drop Transport in Microchannels, Hsueh-Chia Chang, University of Notre Dame Fundamentals of Control Theory, Bill Goodwine, University of Notre Dame Model-Based Flow Control for Distributed Architectures, Thomas R. Bewley, University of California, San Diego Soft Computing in Control, Mihir Sen and Bill Goodwine, University of Notre Dame Part II: Design and Fabrication Materials for Microelectromechanical Systems Christian A. Zorman and Mehran Mehregany, Case Western Reserve University MEMS Fabrication, Marc J. Madou, Nanogen, Inc. LIGA and Other Replication Techniques, Marc J. Madou, Nanogen, Inc. X-Ray-Based Fabrication, Todd Christenson, Sandia National Laboratories Electrochemical Fabrication (EFAB), Adam L. Cohen, MEMGen Corporation Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS, Robert S. Okojie, NASA Glenn Research Center Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, Glenn M. Beheim, NASA Glenn Research Center Microfabricated Chemical Sensors for Aerospace Applications, Gary W. Hunter, NASA Glenn Research Center, Chung-Chiun Liu, Case Western Reserve University, and Darby B. Makel, Makel Engineering, Inc. Packaging of Harsh-Environment MEMS Devices, Liang-Yu Chen and Jih-Fen Lei, NASA Glenn Research Center Part III: Applications of MEMS Inertial Sensors, Paul L. Bergstrom, Michigan Technological University, and Gary G. Li, OMM, Inc. Micromachined Pressure Sensors, Jae-Sung Park, Chester Wilson, and Yogesh B. Gianchandani, University of Wisconsin-Madison Sensors and Actuators for Turbulent Flows. Lennart Loefdahl, Chalmers University of Technology, and Mohamed Gad-el-Hak, University of Notre Dame Surface-Micromachined Mechanisms, Andrew D. Oliver and David W. Plummer, Sandia National Laboratories Microrobotics Thorbjoern Ebefors and Goeran Stemme, Royal Institute of Technology, Sweden Microscale Vacuum Pumps, E. Phillip Muntz, University of Southern California, and Stephen E. Vargo, SiWave, Inc. Microdroplet Generators. Fan-Gang Tseng, National Tsing Hua University, Taiwan Micro Heat Pipes and Micro Heat Spreaders, G. P. "Bud" Peterson, Rensselaer Polytechnic Institute Microchannel Heat Sinks, Yitshak Zohar, Hong Kong University of Science and Technology Flow Control, Mohamed Gad-el-Hak, University of Notre Dame) Part IV: The Future Reactive Control for Skin-Friction Reduction, Haecheon Choi, Seoul National University Towards MEMS Autonomous Control of Free-Shear Flows, Ahmed Naguib, Michigan State University Fabrication Technologies for Nanoelectromechanical Systems, Gary H. Bernstein, Holly V. Goodson, and Gregory L. Snider, University of Notre Dame Index

951 citations

Journal ArticleDOI
03 Apr 2009
TL;DR: This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of Piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
Abstract: Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.

789 citations

Book
Nadim Maluf1
30 Nov 2000
TL;DR: The main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices, and the concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored.
Abstract: If you've not been involved in MEMS (MicroElectroMechanical Systems) technology or had the cause to use MEMS devices, then you may wonder what all the fuss is about. What are MEMS anyway? What's the difference between MEMS and MST (MicroSystems Technology)? What are the advantages over existing technologies? If you have ever found yourself pondering over such questions, then this book may be for you. As the title suggests, the main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices. The intended readership are those technical managers, engineers, scientists and graduate students who are keen to learn about MEMS but have little or no experience of the technology. I was particularly pleased to note that Maluf has dedicated a whole chapter to the important (and often difficult) area of packaging. The first three chapters provide a general overview of the technology. Within the first three pages we are introduced to the MEMS versus MST question, only to discover that the difference depends on where you live! The United States prefer MEMS, while the Europeans use the handle MST. (Note to self: tell colleagues in MEMS group at Southampton). A good account is given of the basic materials used in the technology, including silicon, silicon oxide/nitride/carbide, metals, polymers, quartz and gallium arsenide. The various processes involved in the creation of MEMS devices are also described. A good treatment is given to etching and bonding in addition to the various deposition techniques. It was interesting to note that the author doesn't make a big issue of the differences between bulk and surface micromachined devices; the approach seems to be `here's your toolbag - get on with it'. One of the great strengths of this book is the coverage of commercial MEMS structures. Arising as they have, from essentially a planar technology, MEMS devices are often elaborate three-dimensional creations, and 2D drawings don't do them much justice. I have to say that I was extremely impressed with the many aesthetic isometric views of some of these wonderful structures. Pressure sensors, inkjet print nozzles, mass flow sensors, accelerometers, valves and micromirrors are all given sufficient treatment to describe the fundamental behaviour and design philosophy, but without the mathematical rigour expected for a traditional journal paper. Chapter 5 addresses the promise of the technology as a means of enabling a new range of applications. The concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored. The so-called `lab-on-a-chip' approach is described, whereby complex analytical systems are integrated onto a single chip together with the associated micropumps and microvalves. The design and fabrication of MEMS devices are important issues by themselves. A key area, often overlooked, is that of packaging. Painstaking modelling and intricate fabrication methodologies can produce resonator structures oscillating at precisely, say, 125 kHz. The device is then mounted in a dual-in-line carrier and the frequency shifts by 10 kHz because of the additional internal stresses produced. Packaging issues can't be decoupled from those of the micromachined components. Many of these issues, such as protective coatings, thermal management, calibration etc, are covered briefly in the final chapter. Overall, I found this book informative and interesting. It has a broad appeal and gives a good insight into this fascinating and exciting subject area. Neil White

770 citations

Patent
28 Jan 2008
TL;DR: In this article, a lithographic apparatus configured to project a patterned beam of radiation onto a target portion of a substrate is described, which includes a first radiation dose detector and a second radiation dose detectors, each detector comprising a secondary electron emission surface configured to receive a radiation flux and to emit secondary electrons due to the receipt of the radiation flux.
Abstract: A lithographic apparatus configured to project a patterned beam of radiation onto a target portion of a substrate is disclosed. The apparatus includes a first radiation dose detector and a second radiation dose detector, each detector comprising a secondary electron emission surface configured to receive a radiation flux and to emit secondary electrons due to the receipt of the radiation flux, the first radiation dose detector located upstream with respect to the second radiation dose detector viewed with respect to a direction of radiation transmission, and a meter, connected to each detector, to detect a current or voltage resulting from the secondary electron emission from the respective electron emission surface.

451 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the state of the art of polymer-based MEMS can be found in this paper, including materials, fabrication processes, and representative devices, including microfluidic valves and tactile sensors.
Abstract: Polymer materials, including elastomers, plastics and fibers, are being actively used for MEMS sensors and actuators. Polymer materials provide many advantages in terms of cost, mechanical properties, and ease of processing. In addition, polymers are being investigated for displays, memory, and circuitry. However, the incorporation of polymers for structural or functional purposes in MEMS systems raises new issues and challenges. This article provides a comprehensive review of the recent state of the art of polymer based MEMS-including materials, fabrication processes, and representative devices, including microfluidic valves and tactile sensors. Frequently used materials are reviewed, including polydimethylsiloxane (PDMS), parylene, nanocomposite elastomers, and SU-8 epoxy.

416 citations