scispace - formally typeset
Search or ask a question
Author

Chih-Ping Lin

Bio: Chih-Ping Lin is an academic researcher from National Chiao Tung University. The author has contributed to research in topics: Reflectometry & Time domain. The author has an hindex of 23, co-authored 91 publications receiving 8981 citations. Previous affiliations of Chih-Ping Lin include University of Toronto & Washington University in St. Louis.


Papers
More filters
Journal ArticleDOI
29 Jun 1995-Nature
TL;DR: A minimal cosegregating region containing the AD3 gene is defined, and at least 19 different transcripts encoded within this region corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein.
Abstract: Some cases of Alzheimer's disease are inherited as an autosomal dominant trait. Genetic linkage studies have mapped a locus (AD3) associated with susceptibility to a very aggressive form of Alzheimer's disease to chromosome 14q24.3. We have defined a minimal cosegregating region containing the AD3 gene, and isolated at least 19 different transcripts encoded within this region. One of these transcripts (S182) corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein. Five different missense mutations have been found that cosegregate with early-onset familial Alzheimer's disease. Because these changes occurred in conserved domains of this gene, and are not present in normal controls, they are likely to be causative of AD3.

4,110 citations

Journal ArticleDOI
31 Aug 1995-Nature
TL;DR: Analysis of the nucleotide sequence of the open reading frame of the E5-1 gene led to the discovery of two missense substitutions at conserved amino-acid residues in affected members of pedigrees with a form of familial AD that has a later age of onset than the AD3 subtype (50–70 years versus 30–60 years for AD3).
Abstract: We report the cloning of a novel gene (E5-1) encoded on chromosome 1 which has substantial nucleotide and amino-acid sequence similarity to the S182 gene on chromosome 14q24.3. Mutations, including three new missense mutations in the S182 gene, are associated with the AD3 subtype of early-onset familial Alzheimer's disease (AD). Both the E5-1 and the S182 proteins are predicted to be integral membrane proteins with seven membrane-spanning domains, and a large exposed loop between the sixth and seventh transmembrane domains. Analysis of the nucleotide sequence of the open reading frame (ORF) of the E5-1 gene led to the discovery of two missense substitutions at conserved amino-acid residues in affected members of pedigrees with a form of familial AD that has a later age of onset than the AD3 subtype (50-70 years versus 30-60 years for AD3). These observations imply that the E5-1 gene on chromosome 1 and the S182 gene on chromosome 14q24.3 are members of a family of genes (presenilins) with related functions, and indicates that mutations in conserved residues of E5-1 could also play a role in the genesis of AD. Our results also indicate that still other AD susceptibility genes exist.

2,067 citations

Journal ArticleDOI
TL;DR: The data indicate that at least nine polypeptides are produced by cleavage of the HCV H strain polyprotein, and preliminary results suggest that a fraction of E1 is associated with E2 and E2-NS2 via disulfide linkages.
Abstract: Hepatitis C virus (HCV) is the major cause of transfusion-acquired non-A, non-B hepatitis. HCV is an enveloped positive-sense RNA virus which has been classified as a new genus in the flavivirus family. Like the other two genera in this family, the flaviviruses and the pestiviruses, HCV polypeptides appear to be produced by translation of a long open reading frame and subsequent proteolytic processing of this polyprotein. In this study, a cDNA clone encompassing the long open reading frame of the HCV H strain (3,011 amino acid residues) has been assembled and sequenced. This clone and various truncated derivatives were used in vaccinia virus transient-expression assays to map HCV-encoded polypeptides and to study HCV polyprotein processing. HCV polyproteins and cleavage products were identified by using convalescent human sera and a panel of region-specific polyclonal rabbit antisera. Similar results were obtained for several mammalian cell lines examined, including the human HepG2 hepatoma line. The data indicate that at least nine polypeptides are produced by cleavage of the HCV H strain polyprotein. Putative structural proteins, located in the N-terminal one-fourth of the polyprotein, include the capsid protein C (21 kDa) followed by two possible virion envelope proteins, E1 (31 kDa) and E2 (70 kDa), which are heavily modified by N-linked glycosylation. The remainder of the polyprotein probably encodes nonstructural proteins including NS2 (23 kDa), NS3 (70 kDa), NS4A (8 kDa), NS4B (27 kDa), NS5A (58 kDa), and NS5B (68 kDa). An 82- to 88-kDa glycoprotein which reacted with both E2 and NS2-specific HCV antisera was also identified (called E2-NS2). Preliminary results suggest that a fraction of E1 is associated with E2 and E2-NS2 via disulfide linkages.

977 citations

Journal ArticleDOI
TL;DR: A series of C-terminal truncations and fusion with a human c-myc epitope tag allowed identification of a tenth HCV-encoded cleavage product, p7, which is located between the E2 and NS2 proteins, and possible roles of p7 and E2-p7 in the HCV life cycle are discussed.
Abstract: The hepatitis C virus (HCV) H strain polyprotein is cleaved to produce at least nine distinct products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. In this report, a series of C-terminal truncations and fusion with a human c-myc epitope tag allowed identification of a tenth HCV-encoded cleavage product, p7, which is located between the E2 and NS2 proteins. As determined by N-terminal sequence analysis, p7 begins with position 747 of the HCV H strain polyprotein. p7 is preceded by a hydrophobic sequence at the C terminus of E2 which may direct its translocation into the endoplasmic reticulum, allowing cleavage at the E2/p7 site by host signal peptidase. This hypothesis is supported by the observation that cleavage at the E2/p7 and p7/NS2 sites in cell-free translation studies was dependent upon the addition of microsomal membranes. However, unlike typical cotranslational signal peptidase cleavages, pulse-chase experiments indicate that cleavage at the E2/p7 site is incomplete, leading to the production of two E2-specific species, E2 and E2-p7. Possible roles of p7 and E2-p7 in the HCV life cycle are discussed.

364 citations

Journal ArticleDOI
TL;DR: Analysis of additional members of a pedigree known to segregate a Met239Val mutation in PS-2 revealed that the age of onset of symptoms is highly variable (range 45-88 years), and this variability is not attributable to differences in ApoE genotypes.
Abstract: Missense mutations in the presenilin 2 (PS-2) gene on chromosome 1 were sought by direct nucleotide sequence analysis of the open reading frame of 60 pedigrees with familial Alzheimer's disease (FAD) In the majority of these pedigrees, PS-1 and beta-amyloid precursor protein (beta APP) gene mutations had been excluded While no additional PS-2 pathogenic mutations were detected, four silent nucleotide substitutions and alternative splicing of nucleotides 1338-1340 (Glu325) were observed Analysis of additional members of a pedigree known to segregate a Met239Val mutation in PS-2 revealed that the age of onset of symptoms is highly variable (range 45-88 years) This variability is not attributable to differences in ApoE genotypes These results suggest (i) that, in contrast to mutations in PS-1, mutations in PS-2 are a relatively rare cause of FAD; (ii) that other genetic or environmental factor modify the AD phenotype associated with PS-2 mutations; and (iii) that still other FAD susceptibility genes remain to be identified

298 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
27 Jun 1997-Science
TL;DR: A mutation was identified in the α-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype.
Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a lifetime incidence of approximately 2 percent. A pattern of familial aggregation has been documented for the disorder, and it was recently reported that a PD susceptibility gene in a large Italian kindred is located on the long arm of human chromosome 4. A mutation was identified in the α-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype. This finding of a specific molecular alteration associated with PD will facilitate the detailed understanding of the pathophysiology of the disorder.

7,387 citations

Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
22 Oct 1997-JAMA
TL;DR: The APOE∈4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women.
Abstract: Objective. —To examine more closely the association between apolipoprotein E (APOE) genotype and Alzheimer disease (AD) by age and sex in populations of various ethnic and racial denominations. Data Sources. —Forty research teams contributed data onAPOEgenotype, sex, age at disease onset, and ethnic background for 5930 patients who met criteria for probable or definite AD and 8607 controls without dementia who were recruited from clinical, community, and brain bank sources. Main Outcome Measures. —Odds ratios (ORs) and 95% confidence intervals (Cls) for AD, adjusted for age and study and stratified by major ethnic group (Caucasian, African American, Hispanic, and Japanese) and source, were computed forAPOEgenotypes ∈2/∈2,∈2/∈3,∈2/∈4,∈3/∈4 and ∈4/∈4 relative to the ∈3/∈3 group. The influence of age and sex on the OR for each genotype was assessed using logistic regression procedures. Results. —Among Caucasian subjects from clinic- or autopsy-based studies, the risk of AD was significantly increased for people with genotypes ∈2/∈4 (OR=2.6, 95% Cl=1.6-4.0), ∈3/∈4 (OR=3.2, 95% Cl=2.8-3.8), and ∈4/∈4 (OR=14.9, 95% CI=10.8-20.6); whereas, the ORs were decreased for people with genotypes ∈2/∈2 (OR=0.6, 95% Cl=0.2-2.0) and ∈2/∈3 (OR=0.6, 95% Cl=0.5-0.8). TheAPOE∈4-AD association was weaker among African Americans and Hispanics, but there was significant heterogeneity in ORs among studies of African Americans (P Conclusions. —TheAPOE∈4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women. The association betweenAPOE∈4 and AD in African Americans requires clarification, and the attenuated effect ofAPOE∈4 in Hispanics should be investigated further.

3,825 citations