scispace - formally typeset
Search or ask a question
Author

Chih-Wei Chu

Bio: Chih-Wei Chu is an academic researcher from Academia Sinica. The author has contributed to research in topics: Polymer solar cell & Perovskite (structure). The author has an hindex of 59, co-authored 267 publications receiving 15302 citations. Previous affiliations of Chih-Wei Chu include National Chiao Tung University & Chung Yuan Christian University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the surface of the oxide films and the interface between the polymer and the oxide was studied with the help of atomic force microscopy, and the effect of the thickness of oxide layer on electrical characteristics of the device was also studied and optimized thickness was achieved to give high power conversion efficiency of 3.3% under simulated AM1.5G illumination of 100mW∕cm2.
Abstract: Polymer-based photovoltaic cells have been fabricated by inserting a thin, transparent, transition metal oxide layer between the transparent anode (indium tin oxide) and the polymer layer. Two different transition metal oxides, namely vanadium oxide and molybdenum oxide, were used and the device performance was compared. The surface of the oxide films and the interface between the polymer and the oxide was studied with the help of atomic force microscopy. The effect of the thickness of the oxide layer on electrical characteristics of the device was also studied and optimized thickness was achieved to give high power conversion efficiency of 3.3% under simulated AM1.5G illumination of 100mW∕cm2.

1,033 citations

Journal ArticleDOI
31 Jul 2015-Science
TL;DR: The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface, and direct growth favors the thermodynamically preferred TMDC alloys.
Abstract: Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.

1,011 citations

Journal ArticleDOI
TL;DR: A novel organic memory device fabricated by solution processing that displays an abrupt transition to a high-conductivity state under an external bias of 2.8 V and is non-volatile, indicating that the device may be used for low-cost, high-density memory storage.
Abstract: Building on the success of organic electronic devices, such as light-emitting diodes and field-effect transistors, procedures for fabricating non-volatile organic memory devices are now being explored. Here, we demonstrate a novel organic memory device fabricated by solution processing. Programmable electrical bistability was observed in a device made from a polystyrene film containing gold nanoparticles and 8-hydroxyquinoline sandwiched between two metal electrodes. The as-prepared device, which is in a low-conductivity state, displays an abrupt transition to a high-conductivity state under an external bias of 2.8 V. These two states differ in conductivity by about four orders of magnitude. Applying a negative bias of 1.8 V causes the device to return to the low-conductivity state. The electronic transition is attributed to the electric-field-induced charge transfer between the gold nanoparticles and 8-hydroxyquinoline. The transition from the low- to the high-conductivity state takes place in nanoseconds, and is non-volatile, indicating that the device may be used for low-cost, high-density memory storage.

856 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of interfacial buffer layers (vanadium oxide (V2O5) and cesium carbonate (Cs2CO3) on the performance of polymer solar cells based on regioregular poly-(3-hexylthiophene) and [6,6]-phenyl C60 butyric acid methyl ester blend was investigated.
Abstract: We investigate the effect of interfacial buffer layers—vanadium oxide (V2O5) and cesium carbonate (Cs2CO3)—on the performance of polymer solar cells based on regioregular poly-(3-hexylthiophene) and [6,6]-phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabricated with the structure of indium tin oxide (ITO)/Cs2CO3/polymer blend/vanadium oxide (V2O5)/aluminum (Al). Short-circuit current of 8.42mA∕cm2, open-circuit voltage of 0.56V, and power conversion efficiency of 2.25% under a AM1.5G 130mW∕cm2 condition were achieved. The interfacial layers were also used to fabricate polymer solar cells using ITO and a thin gold (Au) layer as the transparent electrodes. The thickness of V2O5 layer (10nm) makes it an effective protective layer for the active layer so that ITO can be used for both the electrodes, enabling highly efficient transparent polymer solar cells (i.e., p...

798 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a simple yet robust film treatment method with methanol having only one hydroxyl group to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) by four orders of magnitude.
Abstract: We proposed a simple yet robust film treatment method with methanol having only one hydroxyl group to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) by four orders of magnitude. Different methods of film treatment: immersing PEDOT:PSS film in the methanol solution; dropping methanol on the film; and a combination of these are employed and the results are compared. The conductivity of PEDOT:PSS films was enhanced from 0.3 S cm−1 to 1362 S cm−1 after film treatment with methanol. Other alcohols like ethanol and propanol were also used to treat the PEDOT:PSS film and showed inferior conductivity enhancement compared to methanol. The conductivity enhancement was greatly affected by the hydrophilicity and dielectric constant of the alcohols used. The mechanism of conductivity enhancement was investigated through various characterization techniques including FTIR, XPS and AFM. Removal of the insulator PSS from the film, and morphology and conformational changes are the mechanisms for the conductivity enhancement. The treated films also showed high transmittance and low sheet resistance desirable for a standalone electrode. ITO-free polymer solar cells were fabricated using PEDOT:PSS electrodes treated with methanol and showed almost equal performance to ITO electrodes.

697 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations